ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations and clustering of multiplicity in collisions of relativistic ions

308   0   0.0 ( 0 )
 نشر من قبل Maciej Rybczynski
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the recently measured event-by-event multiplicity fluctuations in relativistic heavy-ion collisions. It is shown that the observed non-monotonic behaviour of the scaled variance of multiplicity distribution as a function of collision centrality (such effect is not observed in a widely used string-hadronic models of nuclear collisions) can be fully explained by the correlations between produced particles promoting cluster formation. We define a cluster as a quasi-neutral gas of charged and neutral particles which exhibits collective behaviour. The characteristic space scale of this shielding is the Debye length. Multiplicity distribution in a cluster is given by Negative Binomial distribution while the rest (reservoir), treated as a superposition of elementary collisions, is described by Binomial distribution. The ability to generate spatial structures (cluster phase) sign the propensity to self-organize of hadronic matter.



قيم البحث

اقرأ أيضاً

Multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. In the canonical ensemble conservation of three charges (baryon number, electric charge, and strangeness) is enforced. In addition, in the micro-canonical ensemble energy conservation is included. An analytical method is used to account for resonance decays. Multiplicity distributions and scaled variances for negatively charged hadrons are presented along the chemical freeze-out line of central Pb+Pb (Au+Au) collisions from SIS to LHC energies. Predictions obtained within different statistical ensembles are compared with preliminary NA49 experimental results on central Pb+Pb collisions in the SPS energy range. The measured fluctuations are significantly narrower than a Poisson reference distribution, and clearly favor expectations for the micro-canonical ensemble.
We analyze a generic model where wounded quarks are amended with strings in which both end-point positions fluctuate in spatial rapidity. With the assumption that the strings emit particles independently of one another and with a uniform distribution in rapidity, we are able to analyze the model semi-analytically, which allows for its detailed understanding. Using as a constraint the one-body string emission functions obtained from the experimental data for collisions at $sqrt{s_{NN}}=200$ GeV, we explore the two-body correlations for various scenarios of string fluctuations. We find that the popular measures used to quantify the longitudinal fluctuations are limited with upper and lower bounds and assume close values for the most likely models of the end-point distributions, which may explain why various approaches yield here very similar results.
133 - Krzysztof Wozniak 2007
In the PHOBOS experiment, charged particles are measured in almost the full solid angle. This enables the study of fluctuations and correlations in the particle production over a very wide kinematic range. In this paper, we show results of a direct s earch for fluctuations identified by an unusual shape of the pseudorapidity distribution. In addition, we use analysis of correlations of the multiplicity in similar pseudorapidity bins, placed symmetrically in the forward and backward hemispheres, to test the hypothesis of production of particles in clusters.
We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the Cosmic Microwave Background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations that remain after subtraction of the dominant collective flow signatures. By construction, the proposed approach allows also for the characterization of more complex collective phenomena like higher-order flow and other sources of fluctuations, and it may be extended to the characterization of phenomena of non-collective origin such as jets.
72 - Kevin Welsh , Jordan Singer , 2016
In high energy collisions involving small nuclei (p+p or x+Au collisions where x=p, d, or $^3$He) the fluctuating size, shape and internal gluonic structure of the nucleon is shown to have a strong effect on the initial size and shape of the fireball of new matter created in the collision. A systematic study of the eccentricity coefficients describing this initial fireball state for several semi-realistic models of nucleon substructure and for several practically relevant collision systems involving small nuclei is presented. The key importance of multiplicity fluctuations in such systems is pointed out. Our results show large differences from expectations based on conventional Glauber model simulations of the initial state created in such collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا