ﻻ يوجد ملخص باللغة العربية
Lattice vibrations of point defects are essential for understanding non-radiative electron and hole capture in semiconductors as they govern properties including persistent photoconductivity and Shockley-Read-Hall recombination rate. Although the harmonic approximation is sufficient to describe a defect with small lattice relaxation, for cases of large lattice relaxation it is likely to break down. We describe a first-principles procedure to account for anharmonic carrier capture and apply it to the important case of the textit{DX} center in GaAs. This is a system where the harmonic approximation grossly fails. Our treatment of the anharmonic Morse-like potentials accurately describes the observed electron capture barrier, predicting the absence of quantum tunnelling at low temperature, and a high hole capture rate that is independent of temperature. The model also explains the origin of the composition-invariant electron emission barrier. These results highlight an important shortcoming of the standard approach for describing point defect ionization that is accompanied by large lattice relaxation, where charge transfer occurs far from the equilibrium configuration.
We report ultrafast surface pump and interface probe experiments on photoexcited carrier transport across single crystal bismuth films on sapphire. The film thickness is sufficient to separate carrier dynamics from lattice heating and strain, allowin
Time resolved intensity cross-correlation measurements of radiative cascades are used for studying non-radiative relaxation processes of excited carriers confined in semiconductor quantum dots. We spectrally identify indirect radiative cascades which
An accurate and easily extendable method to deal with lattice dynamics of solids is offered. It is based on first-principles molecular dynamics simulations and provides a consistent way to extract the best possible harmonic - or higher order - potent
We present a vibrational dynamical mean-field theory (VDMFT) of the dynamics of atoms in solids with anharmonic interactions. Like other flavors of DMFT, VDMFT maps the dynamics of a periodic anharmonic lattice of atoms onto those of a self-consisten
Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the