ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond BAO: improving cosmological constraints from BOSS with measurement of the void-galaxy cross-correlation

133   0   0.0 ( 0 )
 نشر من قبل Seshadri Nadathur
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the anisotropic void-galaxy cross-correlation function in the CMASS galaxy sample of the BOSS DR12 data release. We perform a joint fit to the data for redshift space distortions (RSD) due to galaxy peculiar velocities and anisotropies due to the Alcock-Paczynski (AP) effect, for the first time using a velocity field reconstruction technique to remove the complicating effects of RSD in the void centre positions themselves. Fits to the void-galaxy function give a 1% measurement of the AP parameter combination $D_A(z)H(z)/c = 0.4367pm 0.0045$ at redshift $z=0.57$, where $D_A$ is the angular diameter distance and $H$ the Hubble parameter, exceeding the precision obtainable from baryon acoustic oscillations (BAO) by a factor of ~3.5 and free of systematic errors. From voids alone we also obtain a 10% measure of the growth rate, $fsigma_8(z=0.57)=0.501pm0.051$. The parameter degeneracies are orthogonal to those obtained from galaxy clustering. Combining void information with that from BAO and galaxy RSD in the same CMASS sample, we measure $D_A(0.57)/r_s=9.383pm 0.077$ (at 0.8% precision), $H(0.57)r_s=(14.05pm 0.14);10^3$ kms$^{-1}$Mpc$^{-1}$ (1%) and $fsigma_8=0.453pm0.022$ (4.9%), consistent with cosmic microwave background (CMB) measurements from Planck. These represent a factor sim2 improvement in precision over previous results through the inclusion of void information. Fitting a flat cosmological constant $Lambda$CDM model to these results in combination with Planck CMB data, we find up to an 11% reduction in uncertainties on $H_0$ and $Omega_m$ compared to use of the corresponding BOSS consensus values. Constraints on extended models with non-flat geometry and a dark energy of state that differs from $w=-1$ show an even greater improvement.

قيم البحث

اقرأ أيضاً

We use analytic covariance matrices to carry out a full-shape analysis of the galaxy power spectrum multipoles from the Baryon Oscillation Spectroscopic Survey (BOSS). We obtain parameter estimates that agree well with those based on the sample covar iance from two thousand galaxy mock catalogs, thus validating the analytic approach and providing substantial reduction in computational cost. We also highlight a number of additional advantages of analytic covariances. First, the analysis does not suffer from sampling noise, which biases the constraints and typically requires inflating parameter error bars. Second, it allows us to study convergence of the cosmological constraints when recomputing the analytic covariances to match the best-fit power spectrum, which can be done at a negligible computational cost, unlike when using mock catalogs. These effects reduce the systematic error budget of cosmological constraints, which suggests that the analytic approach may be an important tool for upcoming high-precision galaxy redshift surveys such as DESI and Euclid. Finally, we study the impact of various ingredients in the power spectrum covariance matrix and show that the non-Gaussian part, which includes the regular trispectrum and super-sample covariance, has a marginal effect ($lesssim 10 %$) on the cosmological parameter error bars. We also suggest improvements to analytic covariances that are commonly used in Fisher forecasts.
246 - S. Lee , M. A. Troxel , A. Choi 2021
The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy-galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy-galaxy lensing signal, with total $S/N=25.7$. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient $r_{rm cc}$. By jointly fitting the galaxy-galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain $r_{rm cc}=1.09^{+0.12}_{-0.11}$ for the scale cut of $4~h^{-1}{rm Mpc}$ and $r_{rm cc}=1.06^{+0.13}_{-0.12}$ for $12~h^{-1}{rm Mpc}$ in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain $r_{rm cc}=1.06pm 0.10$ for the scale cut of $4~h^{-1}{rm Mpc}$ and $r_{rm cc}=1.03pm 0.11$ for $12~h^{-1}{rm Mpc}$. The resulting values of $r_{rm cc}$ indicate that the lensing signal of DMASS is equivalent to the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy-galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation.
The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST, with cross-correlation coefficient as high as 95%. This will enable use of sample variance cancellation techniques to determine cosmological parameters, and use of cross-correlation measurements to break parameter degeneracies. Assuming large sky overlap between CMB-S4 and LSST, we show that a joint analysis of CMB-S4 lensing and LSST clustering can yield very tight constraints on the matter amplitude $sigma_8(z)$, halo bias, and $f_mathrm{NL}$, competitive with the best stage IV experiment predictions, but using complementary methods, which may carry different and possibly lower systematics. Having no sky overlap between experiments degrades the precision of $sigma_8(z)$ by a factor of 20, and that of $f_mathrm{NL}$ by a factor of 1.5 to 2. Without CMB lensing, the precision always degrades by an order of magnitude or more, showing that a joint analysis is critical. Our results also suggest that CMB lensing in combination with LSS photometric surveys is a competitive probe of the evolution of structure in the redshift range $zsimeq 1-7$, probing a regime that is not well tested observationally. We explore predictions against other surveys and experiment configurations, finding that wide patches with maximal sky overlap between CMB and LSS surveys are most powerful for $sigma_8(z)$ and $f_mathrm{NL}$.
We apply two compression methods to the galaxy power spectrum monopole/quadrupole and bispectrum monopole measurements from the BOSS DR12 CMASS sample. Both methods reduce the dimension of the original data-vector to the number of cosmological parame ters considered, using the Karhunen-Lo`eve algorithm with an analytic covariance model. In the first case, we infer the posterior through MCMC sampling from the likelihood of the compressed data-vector (MC-KL). The second, faster option, works by first Gaussianising and then orthogonalising the parameter space before the compression; in this option (G-PCA) we only need to run a low-resolution preliminary MCMC sample for the Gaussianization to compute our posterior. Both compression methods accurately reproduce the posterior distributions obtained by standard MCMC sampling on the CMASS dataset for a $k$-space range of $0.03-0.12,h/mathrm{Mpc}$. The compression enables us to increase the number of bispectrum measurements by a factor of $sim 23$ over the standard binning (from 116 to 2734 triangles used), which is otherwise limited by the number of mock catalogues available. This reduces the $68%$ credible intervals for the parameters $left(b_1,b_2,f,sigma_8right)$ by $left(-24.8%,-52.8%,-26.4%,-21%right)$, respectively. The best-fit values we obtain are $(b_1=2.31pm0.17,b_2=0.77pm0.19,$ $f(z_{mathrm{CMASS}})=0.67pm0.06,sigma_8(z_{mathrm{CMASS}})=0.51pm0.03)$. Using these methods for future redshift surveys like DESI, Euclid and PFS will drastically reduce the number of simulations needed to compute accurate covariance matrices and will facilitate tighter constraints on cosmological parameters.
Our observations of the Universe are fundamentally anisotropic, with data from galaxies separated transverse to the line of sight coming from the same epoch while that from galaxies separated parallel to the line of sight coming from different times. Moreover, galaxy velocities along the line of sight change their redshift, giving redshift space distortions. We perform a full two-dimensional anisotropy analysis of galaxy clustering data, fitting in a substantially model independent manner the angular diameter distance D_A, Hubble parameter H, and growth rate ddelta/dln a without assuming a dark energy model. The results demonstrate consistency with LCDM expansion and growth, hence also testing general relativity. We also point out the interpretation dependence of the effective redshift z_eff, and its cosmological impact for next generation surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا