ﻻ يوجد ملخص باللغة العربية
The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy-galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy-galaxy lensing signal, with total $S/N=25.7$. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient $r_{rm cc}$. By jointly fitting the galaxy-galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain $r_{rm cc}=1.09^{+0.12}_{-0.11}$ for the scale cut of $4~h^{-1}{rm Mpc}$ and $r_{rm cc}=1.06^{+0.13}_{-0.12}$ for $12~h^{-1}{rm Mpc}$ in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain $r_{rm cc}=1.06pm 0.10$ for the scale cut of $4~h^{-1}{rm Mpc}$ and $r_{rm cc}=1.03pm 0.11$ for $12~h^{-1}{rm Mpc}$. The resulting values of $r_{rm cc}$ indicate that the lensing signal of DMASS is equivalent to the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy-galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation.
We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-ga
The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST, with cross-correlation coefficient as high as 95%.
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshi
We study the impact of lensing corrections on modeling cross correlations between CMB lensing and galaxies, cosmic shear and galaxies, and galaxies in different redshift bins. Estimating the importance of these corrections becomes necessary in the li
We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations fro