ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy-galaxy lensing with the DES-CMASS catalogue: measurement and constraints on the galaxy-matter cross-correlation

247   0   0.0 ( 0 )
 نشر من قبل Sujeong Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy-galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy-galaxy lensing signal, with total $S/N=25.7$. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient $r_{rm cc}$. By jointly fitting the galaxy-galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain $r_{rm cc}=1.09^{+0.12}_{-0.11}$ for the scale cut of $4~h^{-1}{rm Mpc}$ and $r_{rm cc}=1.06^{+0.13}_{-0.12}$ for $12~h^{-1}{rm Mpc}$ in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain $r_{rm cc}=1.06pm 0.10$ for the scale cut of $4~h^{-1}{rm Mpc}$ and $r_{rm cc}=1.03pm 0.11$ for $12~h^{-1}{rm Mpc}$. The resulting values of $r_{rm cc}$ indicate that the lensing signal of DMASS is equivalent to the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy-galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation.



قيم البحث

اقرأ أيضاً

We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-ga laxy lensing cross power spectrum is measured for the first time with a significance of 4.2{sigma}, which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ~ 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.
The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST, with cross-correlation coefficient as high as 95%. This will enable use of sample variance cancellation techniques to determine cosmological parameters, and use of cross-correlation measurements to break parameter degeneracies. Assuming large sky overlap between CMB-S4 and LSST, we show that a joint analysis of CMB-S4 lensing and LSST clustering can yield very tight constraints on the matter amplitude $sigma_8(z)$, halo bias, and $f_mathrm{NL}$, competitive with the best stage IV experiment predictions, but using complementary methods, which may carry different and possibly lower systematics. Having no sky overlap between experiments degrades the precision of $sigma_8(z)$ by a factor of 20, and that of $f_mathrm{NL}$ by a factor of 1.5 to 2. Without CMB lensing, the precision always degrades by an order of magnitude or more, showing that a joint analysis is critical. Our results also suggest that CMB lensing in combination with LSS photometric surveys is a competitive probe of the evolution of structure in the redshift range $zsimeq 1-7$, probing a regime that is not well tested observationally. We explore predictions against other surveys and experiment configurations, finding that wide patches with maximal sky overlap between CMB and LSS surveys are most powerful for $sigma_8(z)$ and $f_mathrm{NL}$.
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshi ft error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.
We study the impact of lensing corrections on modeling cross correlations between CMB lensing and galaxies, cosmic shear and galaxies, and galaxies in different redshift bins. Estimating the importance of these corrections becomes necessary in the li ght of anticipated high-accuracy measurements of these observables. While higher order lensing corrections (sometimes also referred to as post Born corrections) have been shown to be negligibly small for lensing auto correlations, they have not been studied for cross correlations. We evaluate the contributing four-point functions without making use of the Limber approximation and compute line-of-sight integrals with the numerically stable and fast FFTlog formalism. We find that the relative size of lensing corrections depends on the respective redshift distributions of the lensing sources and galaxies, but that they are generally small for high signal-to-noise correlations. We point out that a full assessment and judgement of the importance of these corrections requires the inclusion of lensing Jacobian terms on the galaxy side. We identify these additional correction terms, but do not evaluate them due to their large number. We argue that they could be potentially important and suggest that their size should be measured in the future with ray-traced simulations. We make our code publicly available.
We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations fro m KiDS+GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_ast > 10^{11},M_odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode AGN accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. (2017). Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only ($chi^2 = 1.81$ compared to $chi^2 = 7.79$ for the SAM), and locally brightest galaxies samples ($chi^2 = 3.80$ compared to $chi^2 = 5.01$). With added dust corrections to the colours it matches the SDSS clustering signal well for red low mass galaxies. We find that both the SAMs and TNG300 predict $sim 50,%$ excessive lensing signals for intermediate mass red galaxies with $10.2 < log_{10} M_ast [ M_odot ] < 11.2$ at $r approx 0.6,h^{-1},mathrm{Mpc}$, which require further theoretical development.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا