ﻻ يوجد ملخص باللغة العربية
The formation and abundance of primordial black holes (PBHs) arising from the curvature perturbation $zeta$ is studied. The non-linear relation between $zeta$ and the density contrast $delta$ means that, even when $zeta$ has an exactly Gaussian distribution, significant non-Gaussianities affecting PBH formation must be considered. Numerical simulations are used to investigate the critical value and the mass of PBHs which form, and peaks theory is used to calculate the mass fraction of the universe collapsing to form PBHs at the time of formation. A formalism to calculate the total present day PBH abundance and mass function is also derived. It is found that the abundance of PBHs is very sensitive to the non-linear effects, and that the power spectrum $mathcal{P}_zeta$ must be a factor of $sim2$ larger to produce the same number of PBHs as the linear model (where the exact value depends on the critical value for a region to collapse and form a PBH). This also means that the derived constraints on the small-scale power spectrum from constraints on the abundance of PBHs are weaker by the same factor.
In the context of transient constant-roll inflation near a local maximum, we derive the non-perturbative field redefinition that relates a Gaussian random field with the true non-Gaussian curvature perturbation. Our analysis shows the emergence of a
In the model where Primordial Black Holes (PBHs) form from large primordial curvature (C) perturbations, i.e., CPBHs, constraints on PBH abundance provide in principle constraints on the primordial curvature power spectrum. This connection however de
The properties of primordial curvature perturbations on small scales are still unknown while those on large scales have been well probed by the observations of the cosmic microwave background anisotropies and the large scale structure. In this paper,
We study the contribution to the primordial curvature perturbation on observational scales generated by the reheating field in massless preheating. To do so we use lattice simulations and a recent extension to the $delta N$ formalism. The work demons
Primordial magnetic field (PMF) is one of the feasible candidates to explain observed large-scale magnetic fields, for example, intergalactic magnetic fields. We present a new mechanism that brings us information about PMFs on small scales based on t