We study the contribution to the primordial curvature perturbation on observational scales generated by the reheating field in massless preheating. To do so we use lattice simulations and a recent extension to the $delta N$ formalism. The work demonstrates the functionality of these techniques for calculating the observational signatures of models in which non-perturbative reheating involves a light scalar field.
The properties of primordial curvature perturbations on small scales are still unknown while those on large scales have been well probed by the observations of the cosmic microwave background anisotropies and the large scale structure. In this paper,
we propose the reconstruction method of primordial curvature perturbations on small scales through the merger rate of binary primordial black holes, which could form from large primordial curvature perturbation on small scales.
The formation and abundance of primordial black holes (PBHs) arising from the curvature perturbation $zeta$ is studied. The non-linear relation between $zeta$ and the density contrast $delta$ means that, even when $zeta$ has an exactly Gaussian distr
ibution, significant non-Gaussianities affecting PBH formation must be considered. Numerical simulations are used to investigate the critical value and the mass of PBHs which form, and peaks theory is used to calculate the mass fraction of the universe collapsing to form PBHs at the time of formation. A formalism to calculate the total present day PBH abundance and mass function is also derived. It is found that the abundance of PBHs is very sensitive to the non-linear effects, and that the power spectrum $mathcal{P}_zeta$ must be a factor of $sim2$ larger to produce the same number of PBHs as the linear model (where the exact value depends on the critical value for a region to collapse and form a PBH). This also means that the derived constraints on the small-scale power spectrum from constraints on the abundance of PBHs are weaker by the same factor.
In the model where Primordial Black Holes (PBHs) form from large primordial curvature (C) perturbations, i.e., CPBHs, constraints on PBH abundance provide in principle constraints on the primordial curvature power spectrum. This connection however de
pends necessarily on the details of PBH formation mechanism. In this paper we provide, for the first time, constraints on the primordial curvature power spectrum from the latest limits on PBH abundance, taking into account all the steps from gravitational collapse in real space to PBH formation. In particular, we use results from numerical relativity simulations and peak theory to study the conditions for PBH formation for a range of perturbation shapes, including non-linearities, perturbation profile and a careful treatment of smoothing and filtering scales. We then obtain updated PBH formation conditions and translate that into primordial spectrum constraints for a wide range of shapes and abundances. These updated constraints cover a range of scales not probed by other cosmological observables. Our results show that the correct and accurate modelling of non-linearities, filtering and typical perturbation profile, is crucial for deriving meaningful cosmological implications.
CMB observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers $10^{-3}$ Mpc$^{-1}$ < k < 0.1 Mpc$^{-1}$, [1-8]. Luminous red galaxies and galaxy clusters probe the matter power spectrum
on overlapping scales (0.02 Mpc$^{-1}$ < k < 0.7 Mpc$^{-1}$ [9-18]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc$^{-1} < k < 3$ Mpc$^{-1}$; [19]). These observations indicate that the primordial power spectrum is nearly scale-invariant with amplitude close to $2 times 10^{-9}$, [5, 20-25]. They also strongly support Inflation and motivate us to obtain constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. One could obtain limits to much higher values of $k < 10^5$ Mpc$^{-1}$ and with less sensitivity even higher to $k < 10^{19}- 10^{23}$ Mpc$^{-1}$ using limits from CMB spectral distortions(SD)and on ultracompact minihalo objects(UCMHs)and Primordial Black Holes(PBHs). In this paper, we revisit and collect all the known constraints on both PBHs and UCMHs. We show that unless one uses SD, PBHs give us very relaxed bounds on the primordial curvature perturbations. UCMHs are very informative over a reasonable $k$ range($3 < k < 10^6$ Mpc$^{-1}$)and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of Dark Matter that could be PBHs. Failure to satisfy these conditions would lead to over production of the UCMHs, which is inconsistent with the observations. Therefore, we can almost rule out PBH within their overlap scales with the UCMHs. We consider the UCMH bounds from experiments such as $gamma$-rays, Neutrinos, Reionization, pulsar-timing and SD. We show that they lead to comparable results independent of the form of DM.
Working with perturbations about an FLRW spacetime, we compute the gauge-invariant curvature perturbation to second order solely in terms of scalar field fluctuations. Using the curvature perturbation on uniform density hypersurfaces as our starting
point, we give our results in terms of field fluctuations in the flat gauge, incorporating both large and small scale behaviour. For ease of future numerical implementation we give our result in terms of the scalar field fluctuations and their time derivatives.