ترغب بنشر مسار تعليمي؟ اضغط هنا

Frobenius and Homological Dimensions of Complexes

129   0   0.0 ( 0 )
 نشر من قبل Taran Funk
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is proved that a module $M$ over a Noetherian local ring $R$ of prime characteristic and positive dimension has finite flat dimension if Tor$_i^R({}^e R, M)=0$ for dim $R$ consecutive positive values of $i$ and infinitely many $e$. Here ${}^e R$ denotes the ring $R$ viewed as an $R$-module via the $e$th iteration of the Frobenius endomorphism. In the case $R$ is Cohen-Macualay, it suffices that the Tor vanishing above holds for a single $egeq log_p e(R)$, where $e(R)$ is the multiplicity of the ring. This improves a result of D. Dailey, S. Iyengar, and the second author, as well as generalizing a theorem due to C. Miller from finitely generated modules to arbitrary modules. We also show that if $R$ is a complete intersection ring then the vanishing of Tor$_i^R({}^e R, M)$ for single positive values of $i$ and $e$ is sufficient to imply $M$ has finite flat dimension. This extends a result of L. Avramov and C. Miller.

قيم البحث

اقرأ أيضاً

Let fa be an ideal of a commutative Noetherian ring R and M and N two finitely generated R-modules. Let cd_{fa}(M,N) denote the supremum of the is such that H^i_{fa}(M,N) eq 0. First, by using the theory of Gorenstein homological dimensions, we obtai n several upper bounds for cd_{fa}(M,N). Next, over a Cohen-Macaulay local ring (R,fm), we show that cd_{fm}(M,N)=dim R-grade(Ann_RN,M), provided that either projective dimension of M or injective dimension of N is finite. Finally, over such rings, we establish an analogue of the Hartshorne-Lichtenbaum Vanishing Theorem in the context of generalized local cohomology modules.
121 - Xiaolei Zhang , Wei Zhao 2021
In this paper, we introduce and study the class of $phi$-$w$-flat modules which are generalizations of both $phi$-flat modules and $w$-flat modules. The $phi$-$w$-weak global dimension $phi$-$w$-w.gl.dim$(R)$ of a commutative ring $R$ is also introdu ced and studied. We show that, for a $phi$-ring $R$, $phi$-$w$-w.gl.dim$(R)=0$ if and only if $w$-$dim(R)=0$ if and only if $R$ is a $phi$-von Neumann ring. It is also proved that, for a strongly $phi$-ring $R$, $phi$-$w$-w.gl.dim$(R)leq 1$ if and only if each nonnil ideal of $R$ is $phi$-$w$-flat, if and only if $R$ is a $phi$-PvMR, if and only if $R$ is a PvMR.
Let (R,m) be a commutative Noetherian local ring. It is known that R is Cohen-Macaulay if there exists either a nonzero finitely generated R-module of finite injective dimension or a nonzero Cohen-Macaulay R-module of finite projective dimension. In this paper, we investigate the Gorenstein analogues of these facts.
The family of contractible graphs, introduced by A. Ivashchenko, consists of the collection $mathfrak{I}$ of graphs constructed recursively from $K_1$ by contractible transformations. In this paper we show that every graph in a subfamily of $mathfrak {I}$ (the strongly contractible ones) is a collapsible graph (in the simplicial sense), by providing a sequence of elementary collapses induced by removing contractible vertices or edges. In addition, we introduce an algorithm to identify the contractible vertices in any graph and show that there is a natural homomorphism, induced by the inclusion map of graphs, between the homology groups of the clique complex of graphs with the contractible vertices removed. Finally, we show an application of this result to the computation of the persistent homology for the Vietoris-Rips filtration.
For a monomial ideal $I$, we consider the $i$th homological shift ideal of $I$, denoted by $text{HS}_i(I)$, that is, the ideal generated by the $i$th multigraded shifts of $I$. Some algebraic properties of this ideal are studied. It is shown that for any monomial ideal $I$ and any monomial prime ideal $P$, $text{HS}_i(I(P))subseteq text{HS}_i(I)(P)$ for all $i$, where $I(P)$ is the monomial localization of $I$. In particular, we consider the homological shift ideal of some families of monomial ideals with linear quotients. For any $textbf{c}$-bounded principal Borel ideal $I$ and for the edge ideal of complement of any path graph, it is proved that $text{HS}_i(I)$ has linear quotients for all $i$. As an example of $textbf{c}$-bounded principal Borel ideals, Veronese type ideals are considered and it is shown that the homological shift ideal of these ideals are polymatroidal. This implies that for any polymatroidal ideal which satisfies the strong exchange property, $text{HS}_j(I)$ is again a polymatroidal ideal for all $j$. Moreover, for any edge ideal with linear resolution, the ideal $text{HS}_j(I)$ is characterized and it is shown that $text{HS}_1(I)$ has linear quotients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا