ﻻ يوجد ملخص باللغة العربية
Let $F(x, y) in mathbb{C}[x,y]$ be a polynomial of degree $d$ and let $G(x,y) in mathbb{C}[x,y]$ be a polynomial with $t$ monomials. We want to estimate the maximal multiplicity of a solution of the system $F(x,y) = G(x,y) = 0$. Our main result is that the multiplicity of any isolated solution $(a,b) in mathbb{C}^2$ with nonzero coordinates is no greater than $frac{5}{2}d^2t^2$. We ask whether this intersection multiplicity can be polynomially bounded in the number of monomials of $F$ and $G$, and we briefly review some connections between sparse polynomials and algebraic complexity theory.
We investigate the role played by curve singularity germs in the enumeration of inflection points in families of curves acquiring singular members. Let $N geq 2$, and consider an isolated complete intersection curve singularity germ $f colon (mathbb{
Let $C$ be a smooth projective curve of genus $2$. Following a method by O Grady, we construct a semismall desingularization $tilde{mathcal{M}}_{Dol}^G$ of the moduli space $mathcal{M}_{Dol}^G$ of semistable $G$-Higgs bundles of degree 0 for $G=GL(2,
In this paper we consider the Brill-Noether locus $W_{underline d}(C)$ of line bundles of multidegree $underline d$ of total degree $g-1$ having a nonzero section on a nodal reducible curve $C$ of genus $ggeq2$. We give an explicit description of the
We continue our study of genus 2 curves $C$ that admit a cover $ C to E$ to a genus 1 curve $E$ of prime degree $n$. These curves $C$ form an irreducible 2-dimensional subvariety $L_n$ of the moduli space $M_2$ of genus 2 curves. Here we study the ca
We explore the cohomological structure for the (possibly singular) moduli of $mathrm{SL}_n$-Higgs bundles for arbitrary degree on a genus g curve with respect to an effective divisor of degree >2g-2. We prove a support theorem for the $mathrm{SL}_n$-