ترغب بنشر مسار تعليمي؟ اضغط هنا

Genus 2 curves that admit a degree 5 map to an elliptic curve

148   0   0.0 ( 0 )
 نشر من قبل Tony Shaska
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue our study of genus 2 curves $C$ that admit a cover $ C to E$ to a genus 1 curve $E$ of prime degree $n$. These curves $C$ form an irreducible 2-dimensional subvariety $L_n$ of the moduli space $M_2$ of genus 2 curves. Here we study the case $n=5$. This extends earlier work for degree 2 and 3, aimed at illuminating the theory for general $n$. We compute a normal form for the curves in the locus $L_5$ and its three distinguished subloci. Further, we compute the equation of the elliptic subcover in all cases, give a birational parametrization of the subloci of $L_5$ as subvarieties of $M_2$ and classify all curves in these loci which have extra automorphisms.



قيم البحث

اقرأ أيضاً

The main goal of this article is to compute the class of the divisor of $overline{mathcal{M}}_3$ obtained by taking the closure of the image of $Omegamathcal{M}_3(6;-2)$ by the forgetful map. This is done using Porteous formula and the theory of test curves. For this purpose, we study the locus of meromorphic differentials of the second kind, computing the dimension of the map of these loci to $mathcal{M}_g$ and solving some enumerative problems involving such differentials in low genus. A key tool of the proof is the compactification of strata recently introduced by Bainbridge-Chen-Gendron-Grushevsky-Moller.
We investigate the geometry of etale $4:1$ coverings of smooth complex genus 2 curves with the monodromy group isomorphic to the Klein four-group. There are two cases, isotropic and non-isotropic depending on the values of the Weil pairing restricted to the group defining the covering. We recall from our previous work cite{bo} the results concerning the non-isotropic case and fully describe the isotropic case. We show that the necessary information to construct the Klein coverings is encoded in the 6 points on $mathbb{P}^1$ defining the genus 2 curve. The main result of the paper is the fact that, in both cases the Prym map associated to these coverings is injective. Additionally, we provide a concrete description of the closure of the image of the Prym map inside the corresponding moduli space of polarised abelian varieties.
79 - Jin Cao 2017
In this paper we describe the category of motives for an elliptic curve in the sense of Voevodsky as a derived category of dg modules over a commutative differential graded algebra in the category of representations over some reductive group.
297 - Evgeny Shinder , Ziyu Zhang 2019
We construct nontrivial L-equivalence between curves of genus one and degree five, and between elliptic surfaces of multisection index five. These results give the first examples of L-equivalence for curves (necessarily over non-algebraically closed fields) and provide a new bit of evidence for the conjectural relationship between L-equivalence and derived equivalence. The proof of the L-equivalence for curves is based on Kuznetsovs Homological Projective Duality for Gr(2,5), and L-equivalence is extended from genus one curves to elliptic surfaces using the Ogg--Shafarevich theory of twisting for elliptic surfaces. Finally, we apply our results to K3 surfaces and investigate when the two elliptic L-equivalent K3 surfaces we construct are isomorphic, using Neron--Severi lattices, moduli spaces of sheaves and derived equivalence. The most interesting case is that of elliptic K3 surfaces of polarization degree ten and multisection index five, where the resulting L-equivalence is new.
204 - Daniele Agostini 2020
The Prym map assigns to each covering of curves a polarized abelian variety. In the case of unramified cyclic covers of curves of genus two, we show that the Prym map is ramified precisely on the locus of bielliptic covers. The key observation is tha t we can naturally associate to such a cover an abelian surface with a cyclic polarization, and then the codifferential of the Prym map can be interpreted in terms of multiplication of sections on the abelian surface. Furthermore, we prove that a genus two cyclic cover of degree at least seven is never hyperelliptic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا