ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring A Photospheric Radius Correction to Model Secondary Eclipse Spectra for Transiting Exoplanets

77   0   0.0 ( 0 )
 نشر من قبل Jonathan J. Fortney
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We highlight a physical effect that is often not considered that impacts the calculation of model spectra of planets at secondary eclipse, affecting both emission and reflection spectra. The radius of the emitting surface of the planet is not merely one value measured from a transit light curve, but is itself a function of wavelength, yet it is not directly measurable. At high precision, a similar effect is well-known in transit transmission spectroscopy but this related effect also impacts emission and reflection. As is well-appreciated, the photospheric radius can vary across $sim$4-8 atmospheric scale heights, depending on atmospheric opacity and spectral resolution. This effect leads to a decreased weighting in model calculations at wavelengths where atmospheric opacity is low, and one sees more deeply into the atmosphere, to a smaller radius. The overall effect serves to mute emission spectra features for atmospheres with no thermal inversion but to enhance features for atmospheres with a thermal inversion. While this effect can be ignored for current emph{Hubble} observations, it can lead to wavelength-dependent 10-20% changes in planet-to-star flux ratios in the infrared at $Rsim~200-1000$ (readily achievable for JWST) for low-gravity hot Jupiters, although values of 5% are more typical for the population. The effect is mostly controlled by the ratio of the atmospheric scale height to the planet radius, and can be important at any planetary temperature. Of known planets, the effect is largest for the cool super-puffs at very low surface gravity, where it can alter calculated flux ratios by over 100%. We discuss complexities of including this photospheric radius effect in 1D and 3D atmosphere models.

قيم البحث

اقرأ أيضاً

A planets emission spectrum contains information about atmospheric composition and structure. We compare the Bayesian Information Criterion (BIC) of blackbody fits and idealized spectral retrieval fits for the 44 planets with published eclipse measur ements in multiple thermal wavebands, mostly obtained with the Spitzer Space Telescope. The evidence for spectral features depends on eclipse depth uncertainties. Spitzer has proven capable of eclipse precisions better than 1E-4 when multiple eclipses are analyzed simultaneously, but this feat has only been performed four times. It is harder to self-calibrate photometry when a single occultation is reduced and analyzed in isolation; we find that such measurements have not passed the test of repeatability. Single-eclipse measurements either have an uncertainty floor of 5E-4, or their uncertainties have been underestimated by a factor of 3. If one adopts these empirical uncertainties for single-eclipse measurements, then the evidence for molecular features all but disappears: blackbodies have better BIC than spectral retrieval for all planets, save HD 189733b, and the few planets poorly fit by blackbodies are also poorly fit by self-consistent radiative transfer models. This suggests that the features in extant broadband emission spectra are due to astrophysical and instrumental noise rather than molecular bands. Claims of stratospheric
66 - F. Davoudi , A. Poro , E. Paki 2020
In this research, 14 light curves of 10 hot Jupiter exoplanets available on Exoplanet Transit Database (ETD) were analyzed. We extracted the transit parameters using EXOFAST software. Finally, we compared the planets radius parameter calculated by th e EXOFAST with the value at the NASA Exoplanet Archive (NEA) using the confidence interval method. According to the results obtained from this comparison, there is an acceptable match for the planets radius with NEA values. Also, based on the average value of 350 mm optics in this study, it shows that the results obtained using small telescopes can be very significant if there is appropriate observational skill to study more discovered planets.
We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, and the atmospheres of irradiated gi ant planets at high surface gravity. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195+/-0.010% at 3.6um and 0.200+/-0.012% at 4.5um. We also find tentative evidence for the secondary eclipse in the z band with a depth of 0.049+/-0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6]-[4.5] color of 0.07+/-0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6]-[4.5] colors of ~0.4, with a very large range from ~0 to ~1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b has an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.
The transiting planet CoRoT-1b is thought to belong to the pM-class of planets, in which the thermal emission dominates in the optical wavelengths. We present a detection of its secondary eclipse in the CoRoT white channel data, whose response functi on goes from ~400 to ~1000 nm. We used two different filtering approaches, and several methods to evaluate the significance of a detection of the secondary eclipse. We detect a secondary eclipse centered within 20 min at the expected times for a circular orbit, with a depth of 0.016+/-0.006%. The center of the eclipse is translated in a 1-sigma upper limit to the planets eccentricity of ecosomega<0.014. Under the assumption of a zero Bond Albedo and blackbody emission from the planet, it corresponds to a T_{CoRoT}=2330 +120-140 K. We provide the equilibrium temperatures of the planet as a function of the amount of reflected light. If the planet is in thermal equilibrium with the incident flux from the star, our results imply an inefficient transport mechanism of the flux from the day to the night sides.
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-M cLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planets spectral line profiles resulting in an anomaly in the planets radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا