ﻻ يوجد ملخص باللغة العربية
We consider the problem of confining the famously elusive Dirac-like quasiparticles, as found in some recently discovered low-dimensional systems. After briefly surveying the existing theoretical proposals for creating bound states in Dirac materials, we study relativistic excitations with a position-dependent mass term. With the aid of an exactly-solvable model, we show how bound states begin to emerge after a critical condition on the size of the mass term is met. We also reveal some exotic properties of the unusual confinement discovered, including an elegant chevron structure of the bound state energies as a function of the size of the mass.
In this work the above-band gap absorption spectrum in two-dimensional Dirac materials is calculated with account for the interaction between the photocarriers. Both the screened Rytova-Keldysh and pure Coulomb attraction potentials between the elect
Exciton problem is solved in the two-dimensional Dirac model with allowance for strong electron-hole attraction. The exciton binding energy is assumed smaller than but comparable to the band gap. The exciton wavefunction is found in the momentum spac
We show that the conductivity of a two-dimensional electron gas can be intrinsically anisotropic despite isotropic Fermi surface, energy dispersion, and disorder configuration. In the model we study, the anisotropy stems from the interplay between Di
We analyze the valley selection rules for optical transitions from impurity states to the conduction band in two-dimensional Dirac materials, taking a monolayer of MoS2 as an example. We employ the analytical model of a shallow impurity potential whi
The spin polarization induced by the spin Hall effect (SHE) in thin films typically points out of the plane. This is rooted not in a fundamental constraint but on the specific symmetries of traditionally studied systems. We theoretically show that th