ﻻ يوجد ملخص باللغة العربية
Infrared (IR) technologies have become increasingly relevant as they offer a wide range of applications, from thermal imaging to chemical and biological vibrational spectroscopy. Substrate materials, such as calcium fluoride and zinc selenide, are commonly used for IR optics. Unfortunately, they are typically fragile, hygroscopic and expensive, thus producing potential problems during device fabrication and in the long-term functional operation. Here, we introduce yttria-stabilized zirconia (YSZ) ceramic as a flexible and stable platform to implement next generation IR nano-optic devices. In particular, we have combined YSZ with metallic nano-structures and graphene to demonstrate new plasmonics, polarizers and transparent heating substrates. The proposed YSZ-based platforms enable high temperature processing that also withstand harsh environments because of its excellent mechanical, thermal and chemical stability. In addition to the functional capability of making foldable and bendable devices, the demonstrated mechanical flexibility offers the possibility of roll-to-roll processing for low cost and large scale fabrication processes. Our work offers compelling evidence that ultrathin YSZ is a unique substrate for IR applications, given all the combined features, including mechanical flexibility, durability, transparency and easy processing, which are not available from other available material alternatives.
We have succeeded in growing epitaxial and highly stoichiometric films of EuO on yttria-stabilized cubic zirconia (YSZ) (001). The use of the Eu-distillation process during the molecular beam epitaxy assisted growth enables the consistent achievement
Multilayered heterostructures of Ce0.85Sm0.15O2-delta and Y0.16Zr0.92O2-delta of a high crystallographic quality were fabricated on (001) - oriented MgO single crystal substrates. Keeping the total thickness of the heterostructures constant, the numb
Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultra-low power technologies. Among few suggested approaches, magneto-ionic control of magnetism has demonstrated large m
Additive manufacturing represents a revolution due to its unique capabilities for freeform fabrication of near net shapes with strong reduction of waste material and capital cost. These unfair advantages are especially relevant for expensive and ener
Nano-optic imagers that modulate light at sub-wavelength scales could unlock unprecedented applications in diverse domains ranging from robotics to medicine. Although metasurface optics offer a path to such ultra-small imagers, existing methods have