ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint training framework for text-to-speech and voice conversion using multi-source Tacotron and WaveNet

97   0   0.0 ( 0 )
 نشر من قبل Junichi Yamagishi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the training of a shared model for both text-to-speech (TTS) and voice conversion (VC) tasks. We propose using an extended model architecture of Tacotron, that is a multi-source sequence-to-sequence model with a dual attention mechanism as the shared model for both the TTS and VC tasks. This model can accomplish these two different tasks respectively according to the type of input. An end-to-end speech synthesis task is conducted when the model is given text as the input while a sequence-to-sequence voice conversion task is conducted when it is given the speech of a source speaker as the input. Waveform signals are generated by using WaveNet, which is conditioned by using a predicted mel-spectrogram. We propose jointly training a shared model as a decoder for a target speaker that supports multiple sources. Listening experiments show that our proposed multi-source encoder-decoder model can efficiently achieve both the TTS and VC tasks.



قيم البحث

اقرأ أيضاً

This paper presents a refinement framework of WaveNet vocoders for variational autoencoder (VAE) based voice conversion (VC), which reduces the quality distortion caused by the mismatch between the training data and testing data. Conventional WaveNet vocoders are trained with natural acoustic features but conditioned on the converted features in the conversion stage for VC, and such a mismatch often causes significant quality and similarity degradation. In this work, we take advantage of the particular structure of VAEs to refine WaveNet vocoders with the self-reconstructed features generated by VAE, which are of similar characteristics with the converted features while having the same temporal structure with the target natural features. We analyze these features and show that the self-reconstructed features are similar to the converted features. Objective and subjective experimental results demonstrate the effectiveness of our proposed framework.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i nstitutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
End-to-end speech synthesis is a promising approach that directly converts raw text to speech. Although it was shown that Tacotron2 outperforms classical pipeline systems with regards to naturalness in English, its applicability to other languages is still unknown. Japanese could be one of the most difficult languages for which to achieve end-to-end speech synthesis, largely due to its character diversity and pitch accents. Therefore, state-of-the-art systems are still based on a traditional pipeline framework that requires a separate text analyzer and duration model. Towards end-to-end Japanese speech synthesis, we extend Tacotron to systems with self-attention to capture long-term dependencies related to pitch accents and compare their audio quality with classical pipeline systems under various conditions to show their pros and cons. In a large-scale listening test, we investigated the impacts of the presence of accentual-type labels, the use of force or predicted alignments, and acoustic features used as local condition parameters of the Wavenet vocoder. Our results reveal that although the proposed systems still do not match the quality of a top-line pipeline system for Japanese, we show important stepping stones towards end-to-end Japanese speech synthesis.
Explicit duration modeling is a key to achieving robust and efficient alignment in text-to-speech synthesis (TTS). We propose a new TTS framework using explicit duration modeling that incorporates duration as a discrete latent variable to TTS and ena bles joint optimization of whole modules from scratch. We formulate our method based on conditional VQ-VAE to handle discrete duration in a variational autoencoder and provide a theoretical explanation to justify our method. In our framework, a connectionist temporal classification (CTC) -based force aligner acts as the approximate posterior, and text-to-duration works as the prior in the variational autoencoder. We evaluated our proposed method with a listening test and compared it with other TTS methods based on soft-attention or explicit duration modeling. The results showed that our systems rated between soft-attention-based methods (Transformer-TTS, Tacotron2) and explicit duration modeling-based methods (Fastspeech).
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach, which utilizes text supervision during training. In this approach, we combine a bottle-neck feature extractor (BNE) with a s eq2seq synthesis module. During the training stage, an encoder-decoder-based hybrid connectionist-temporal-classification-attention (CTC-attention) phoneme recognizer is trained, whose encoder has a bottle-neck layer. A BNE is obtained from the phoneme recognizer and is utilized to extract speaker-independent, dense and rich spoken content representations from spectral features. Then a multi-speaker location-relative attention based seq2seq synthesis model is trained to reconstruct spectral features from the bottle-neck features, conditioning on speaker representations for speaker identity control in the generated speech. To mitigate the difficulties of using seq2seq models to align long sequences, we down-sample the input spectral feature along the temporal dimension and equip the synthesis model with a discretized mixture of logistic (MoL) attention mechanism. Since the phoneme recognizer is trained with large speech recognition data corpus, the proposed approach can conduct any-to-many voice conversion. Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity. Ablation studies are conducted to confirm the effectiveness of feature selection and model design strategies in the proposed approach. The proposed VC approach can readily be extended to support any-to-any VC (also known as one/few-shot VC), and achieve high performance according to objective and subjective evaluations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا