ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of enhanced Tacotron text-to-speech synthesis systems with self-attention for pitch accent language

314   0   0.0 ( 0 )
 نشر من قبل Yusuke Yasuda
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end speech synthesis is a promising approach that directly converts raw text to speech. Although it was shown that Tacotron2 outperforms classical pipeline systems with regards to naturalness in English, its applicability to other languages is still unknown. Japanese could be one of the most difficult languages for which to achieve end-to-end speech synthesis, largely due to its character diversity and pitch accents. Therefore, state-of-the-art systems are still based on a traditional pipeline framework that requires a separate text analyzer and duration model. Towards end-to-end Japanese speech synthesis, we extend Tacotron to systems with self-attention to capture long-term dependencies related to pitch accents and compare their audio quality with classical pipeline systems under various conditions to show their pros and cons. In a large-scale listening test, we investigated the impacts of the presence of accentual-type labels, the use of force or predicted alignments, and acoustic features used as local condition parameters of the Wavenet vocoder. Our results reveal that although the proposed systems still do not match the quality of a top-line pipeline system for Japanese, we show important stepping stones towards end-to-end Japanese speech synthesis.



قيم البحث

اقرأ أيضاً

Neural sequence-to-sequence text-to-speech synthesis (TTS) can produce high-quality speech directly from text or simple linguistic features such as phonemes. Unlike traditional pipeline TTS, the neural sequence-to-sequence TTS does not require manual ly annotated and complicated linguistic features such as part-of-speech tags and syntactic structures for system training. However, it must be carefully designed and well optimized so that it can implicitly extract useful linguistic features from the input features. In this paper we investigate under what conditions the neural sequence-to-sequence TTS can work well in Japanese and English along with comparisons with deep neural network (DNN) based pipeline TTS systems. Unlike past comparative studies, the pipeline systems also use autoregressive probabilistic modeling and a neural vocoder. We investigated systems from three aspects: a) model architecture, b) model parameter size, and c) language. For the model architecture aspect, we adopt modified Tacotron systems that we previously proposed and their variants using an encoder from Tacotron or Tacotron2. For the model parameter size aspect, we investigate two model parameter sizes. For the language aspect, we conduct listening tests in both Japanese and English to see if our findings can be generalized across languages. Our experiments suggest that a) a neural sequence-to-sequence TTS system should have a sufficient number of model parameters to produce high quality speech, b) it should also use a powerful encoder when it takes characters as inputs, and c) the encoder still has a room for improvement and needs to have an improved architecture to learn supra-segmental features more appropriately.
81 - Adrian {L}ancucki 2020
We present FastPitch, a fully-parallel text-to-speech model based on FastSpeech, conditioned on fundamental frequency contours. The model predicts pitch contours during inference. By altering these predictions, the generated speech can be more expres sive, better match the semantic of the utterance, and in the end more engaging to the listener. Uniformly increasing or decreasing pitch with FastPitch generates speech that resembles the voluntary modulation of voice. Conditioning on frequency contours improves the overall quality of synthesized speech, making it comparable to state-of-the-art. It does not introduce an overhead, and FastPitch retains the favorable, fully-parallel Transformer architecture, with over 900x real-time factor for mel-spectrogram synthesis of a typical utterance.
We investigated the training of a shared model for both text-to-speech (TTS) and voice conversion (VC) tasks. We propose using an extended model architecture of Tacotron, that is a multi-source sequence-to-sequence model with a dual attention mechani sm as the shared model for both the TTS and VC tasks. This model can accomplish these two different tasks respectively according to the type of input. An end-to-end speech synthesis task is conducted when the model is given text as the input while a sequence-to-sequence voice conversion task is conducted when it is given the speech of a source speaker as the input. Waveform signals are generated by using WaveNet, which is conditioned by using a predicted mel-spectrogram. We propose jointly training a shared model as a decoder for a target speaker that supports multiple sources. Listening experiments show that our proposed multi-source encoder-decoder model can efficiently achieve both the TTS and VC tasks.
Recurrent neural network transducers (RNN-T) have been successfully applied in end-to-end speech recognition. However, the recurrent structure makes it difficult for parallelization . In this paper, we propose a self-attention transducer (SA-T) for s peech recognition. RNNs are replaced with self-attention blocks, which are powerful to model long-term dependencies inside sequences and able to be efficiently parallelized. Furthermore, a path-aware regularization is proposed to assist SA-T to learn alignments and improve the performance. Additionally, a chunk-flow mechanism is utilized to achieve online decoding. All experiments are conducted on a Mandarin Chinese dataset AISHELL-1. The results demonstrate that our proposed approach achieves a 21.3% relative reduction in character error rate compared with the baseline RNN-T. In addition, the SA-T with chunk-flow mechanism can perform online decoding with only a little degradation of the performance.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i nstitutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا