ﻻ يوجد ملخص باللغة العربية
Galaxy mergers are expected to have a significant role in the mass assembly of galaxies in the early Universe, but there are very few observational constraints on the merger history of galaxies at $z>2$. We present the first study of galaxy major mergers (mass ratios $>$ 1:4) in mass-selected samples out to $zapprox6$. Using all five fields of the HST/CANDELS survey and a probabilistic pair count methodology that incorporates the full photometric redshift posteriors and corrections for stellar mass completeness, we measure galaxy pair-counts for projected separations between 5 and 30 kpc in stellar mass selected samples at $9.7 < log_{10}(rm{M}_{*}/rm{M}_{odot}) < 10.3$ and $log_{10}(rm{M}_{*}/rm{M}_{odot}) > 10.3$. We find that the major merger pair fraction rises with redshift to $zapprox6$ proportional to $(1+z)^{m}$, with $m = 0.8pm0.2$ ($m = 1.8pm0.2$) for $log_{10}(rm{M}_{*} / rm{M}_{odot}) > 10.3$ ($9.7 < log_{10}(rm{M}_{*}/rm{M}_{odot}) < 10.3$). Investigating the pair fraction as a function of mass ratio between 1:20 and 1:1, we find no evidence for a strong evolution in the relative numbers of minor to major mergers out to $z<3$. Using evolving merger timescales we find that the merger rate per galaxy ($mathcal{R}$) rises rapidly from $0.07pm 0.01$ Gyr$^{-1}$ at $z < 1$ to $7.6pm 2.7$ Gyr$^{-1}$ at $z = 6$ for galaxies at $log_{10}(rm{M}_{*}/rm{M}_{odot}) > 10.3$. The corresponding co-moving major merger rate density remains roughly constant during this time, with rates of $Gamma approx 10^{-4}$ Gyr$^{-1}$ Mpc$^{-3}$. Based on the observed merger rates per galaxy, we infer specific mass accretion rates from major mergers that are comparable to the specific star-formation rates for the same mass galaxies at $z>3$ - observational evidence that mergers are as important a mechanism for building up mass at high redshift as in-situ star-formation.
We constrain the stellar population properties of a sample of 52 massive galaxies, with stellar mass log Ms>10.5, over the redshift range 0.5<z<2 by use of observer-frame optical and near-infrared slitless spectra from HSTs ACS and WFC3 grisms. The d
(Abridged) A simple quantitative model is presented for the history of galaxies to explain galaxy number counts, redshift distributions and some other related observations. We first infer that irregular galaxies and the disks of spiral galaxies are y
This is the first in a series of papers examining the demographics of star-forming galaxies at $0.2<z<2.5$ in CANDELS. We study 9,100 galaxies from GOODS-S and UDS having published values of redshifts, masses, star-formation rates (SFRs), and dust at
We exploit a sample of ultra-faint high-redshift galaxies (demagnified HST $H_{160}$ magnitude $>30$) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function (LF) in the presence of photoionizat
We investigate the dynamical evolution of galaxies in groups with different formation epochs. Galaxy groups have been selected to be in different dynamical states, namely dynamically old and dynamically young, which reflect their early and late forma