ترغب بنشر مسار تعليمي؟ اضغط هنا

Demographics of Star-forming Galaxies since $zsim2.5$. I. The $UVJ$ Diagram in CANDELS

162   0   0.0 ( 0 )
 نشر من قبل Jerome Fang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the first in a series of papers examining the demographics of star-forming galaxies at $0.2<z<2.5$ in CANDELS. We study 9,100 galaxies from GOODS-S and UDS having published values of redshifts, masses, star-formation rates (SFRs), and dust attenuation ($A_V$) derived from UV-optical SED fitting. In agreement with previous works, we find that the $UVJ$ colors of a galaxy are closely correlated with its specific star-formation rate (SSFR) and $A_V$. We define rotated $UVJ$ coordinate axes, termed $S_mathrm{SED}$ and $C_mathrm{SED}$, that are parallel and perpendicular to the star-forming sequence and derive a quantitative calibration that predicts SSFR from $C_mathrm{SED}$ with an accuracy of ~0.2 dex. SFRs from UV-optical fitting and from UV+IR values based on Spitzer/MIPS 24 $mumathrm{m}$ agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star-formation decline and quenching, exhibit mass-accelerated evolution (downsizing). A population of transition galaxies below the star-forming main sequence is identified. These objects are located between star-forming and quiescent galaxies in $UVJ$ space and have lower $A_V$ and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and star-forming galaxies are given as a function of mass and redshift.

قيم البحث

اقرأ أيضاً

For the first time, we present the size evolution of a mass-complete (log(M*/Msol)>10) sample of star-forming galaxies over redshifts z=1-7, selected from the FourStar Galaxy Evolution Survey (ZFOURGE). Observed H-band sizes are measured from the Cos mic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Hubble Space Telescope (HST)/F160W imaging. Distributions of individual galaxy masses and sizes illustrate that a clear mass-size relation exists up to z~7. At z~7, we find that the average galaxy size from the mass-size relation is more compact at a fixed mass of log(M*/Msol)=10.1, with r_1/2,maj=1.02+/-0.29 kpc, than at lower redshifts. This is consistent with our results from stacking the same CANDELS HST/F160W imaging, when we correct for galaxy position angle alignment. We find that the size evolution of star-forming galaxies is well fit by a power law of the form r_e = 7.07(1 + z)^-0.89 kpc, which is consistent with previous works for normal star-formers at 1<z<4. In order to compare our slope with those derived Lyman break galaxy studies, we correct for different IMFs and methodology and find a slope of -0.97+/-0.02, which is shallower than that reported for the evolution of Lyman break galaxies at z>4 (r_epropto(1 +z)^-1.2+/-0.06). Therefore, we conclude the Lyman break galaxies likely represent a subset of highly star-forming galaxies that exhibit rapid size growth at z>4.
We determine the intrinsic, 3-dimensional shape distribution of star-forming galaxies at 0<z<2.5, as inferred from their observed projected axis ratios. In the present-day universe star-forming galaxies of all masses 1e9 - 1e11 Msol are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M* > 1e10 Msol) disks are the most common geometric shape at all z < 2. Lower-mass galaxies at z>1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 1e9 Msol (1e10 Msol) are a mix of roughly equal numbers of elongated and disk galaxies at z~1 (z~2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z~1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks.
We study the evolution of the core (r<1 kpc) and effective (r<r_e) stellar-mass surface densities, in star-forming and quiescent galaxies. Since z=3, both populations occupy distinct, linear relations in log(Sigma_e) and log(Sigma_1) vs. log(M). Thes e structural relations exhibit slopes and scatter that remain almost constant with time while their normalizations decline. For SFGs, the normalization declines by less than a factor of 2 from z=3, in both Sigma_e and Sigma_1. Such mild declines suggest that SFGs build dense cores by growing along these relations. We define this evolution as the structural main sequence (Sigma-MS). Quiescent galaxies follow different relations (Sigma^Q_e, Sigma^Q_1) off the Sigma-MS by having higher densities than SFGs of the same mass and redshift. The normalization of Sigma^Q_e declines by a factor of 10 since z=3, but only a factor of 2 in Sigma^Q_1. Thus, the common denominator for quiescent galaxies at all redshifts is the presence of a dense stellar core, and the formation of such cores in SFGs is the main requirement for quenching. Expressed in 2D as deviations off the SFR-MS and off Sigma^Q_1 at each redshift, the distribution of massive galaxies forms a universal, L-shaped sequence that relates two fundamental physical processes: compaction and quenching. Compaction is a process of substantial core-growth in SFGs relative to that in the Sigma-MS. This process increases the core-to-total mass and Sersic index, thereby, making compact SFGs. Quenching occurs once compact SFGs reach a maximum central density above Sigma^Q_1 > 9.5 M_sun/kpc^2. This threshold provides the most effective selection criterion to identify the star-forming progenitors of quiescent galaxies at all redshifts.
The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge and southern plane. Data taken during 2010-11 covered 315 deg2 in the bulge area in the JHKs bands. We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour-magnitude diagram (CMD) for the entire Galactic bulge. Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173.1M+ sources in the three bands. Selecting only the data points flagged as stellar, the total number of sources is 84.0M+. We built the largest CMDs published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8-10 deg, while in the inner part (b ~ 3deg) they appear to be spreading in colour, or even splitting into a secondary peak. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J-Ks) ~ 0.7-0.9 mag and Ks~14 mag. The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour are caused by reddening effects.
We study the rest-frame ultra-violet sizes of massive (~0.8 x 10^11 M_Sun) galaxies at 3.4<z<4.2, selected from the FourStar Galaxy Evolution Survey (ZFOURGE), by fitting single Sersic profiles to HST/WFC3/F160W images from the Cosmic Assembly Near-I nfrared Deep Extragalactic Legacy Survey (CANDELS). Massive quiescent galaxies are very compact, with a median circularized half-light radius r_e = 0.63 +/- 0.18 kpc. Removing 5/16 (31%) sources with signs of AGN activity does not change the result. Star-forming galaxies have r_e = 2.0 +/- 0.60 kpc, 3.2 +/- 1.3 x larger than quiescent galaxies. Quiescent galaxies at z~4 are on average 6.0 +- 0.17 x smaller than at z~0 and 1.9 +/- 0.7 x smaller than at z~2. Star-forming galaxies of the same stellar mass are 2.4 +/- 0.7 x smaller than at z~0. Overall, the size evolution at 0<z<4 is well described by a powerlaw, with r_e = 5.08 +/- 0.28 (1+z)^(-1.44+/-0.08) kpc for quiescent and r_e = 6.02 +/- 0.28 (1+z)^(-0.72+/-0.05) kpc for star-forming galaxies. Compact star-forming galaxies are rare in our sample: we find only 1/14 (7%) with r_e / (M / 10^11 M_Sun)^0.75 < 1.5, whereas 13/16 (81%) of the quiescent galaxies is compact. The number density of compact quiescent galaxies at z~4 is 1.8 +/- 0.8 x 10^-5 Mpc^-3 and increases rapidly, by >5 x, between 2<z<4. The paucity of compact star-forming galaxies at z~4 and their large rest-frame ultra-violet median sizes suggest that the formation phase of compact cores is very short and/or highly dust obscured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا