ﻻ يوجد ملخص باللغة العربية
In this paper we study sufficient conditions for the solvability of the first Hochschild cohomology of a finite dimensional algebra as a Lie algebra in terms of its Ext-quiver in arbitrary characteristic. In particular, we show that if the quiver has no parallel arrows and no loops then the first Hochschild cohomology is solvable. For quivers containing loops, we determine easily verifiable sufficient conditions for the solvability of the first Hochschild cohomology. We apply these criteria to show the solvability of the first Hochschild cohomology space for large families of algebras, namely, several families of self-injective tame algebras including all tame blocks of finite groups and some wild algebras including most quantum complete intersections.
We show that the restricted Lie algebra structure on Hochschild cohomology is invariant under stable equivalences of Morita type between self-injective algebras. Thereby we obtain a number of positive characteristic stable invariants, such as the $p$
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then
Given a finite dimensional Lie algebra $L$ let $I$ be the augmentation ideal in the universal enveloping algebra $U(L)$. We study the conditions on $L$ under which the $Ext$-groups $Ext (k,k)$ for the trivial $L$-module $k$ are the same when computed
The Hochschild cohomology ring of a group algebra is an object that has received recent attention, but is difficult to compute, in even the simplest of cases. In this paper, we use the product formula due to Witherspoon and Siegel to extend some of t
We give a complete study of the Clifford-Weyl algebra ${mathcal C}(n,2k)$ from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that ${mathcal C}(n,2k)$ is rigid when $n$ is even or when $k eq 1$. We find