ﻻ يوجد ملخص باللغة العربية
We derive an inequality for the linear entropy, that gives sharp bounds for all finite dimensional systems. The derivation is based on generalised Bloch decompositions and provides a strict improvement for the possible distribution of purities for all finite dimensional quantum states. It thus extends the widely used concept of entropy inequalities from the asymptotic to the finite regime, and should also find applications in entanglement detection and efficient experimental characterisations of quantum states.
Multipartite quantum system is complex. Characterizing the relations among the three bipartite reduced density operators $rho_{AB}$, $rho_{AC}$ and $rho_{BC}$ of a tripartite state $rho_{ABC}$ has been an open problem in quantum information. One of s
We investigate possible generalizations of the Coffman-Kundu-Wootters monogamy inequality to four qubits, accounting for multipartite entanglement in addition to the bipartite terms. We show that the most natural extension of the inequality does not
In recent papers, the theory of representations of finite groups has been proposed to analyzing the violation of Bell inequalities. In this paper, we apply this method to more complicated cases. For two partite system, Alice and Bob each make one of
Fawzi and Fawzi recently defined the sharp Renyi divergence, $D_alpha^#$, for $alpha in (1, infty)$, as an additional quantum Renyi divergence with nice mathematical properties and applications in quantum channel discrimination and quantum communicat
In this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. The latter inequality, which we call approximate tenso