ﻻ يوجد ملخص باللغة العربية
In this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. The latter inequality, which we call approximate tensorization of the relative entropy, can be expressed as a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.
The property of superadditivity of the quantum relative entropy states that, in a bipartite system $mathcal{H}_{AB}=mathcal{H}_A otimes mathcal{H}_B$, for every density operator $rho_{AB}$ one has $ D( rho_{AB} || sigma_A otimes sigma_B ) ge D( rho_A
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing con
Noncommuting observables cannot be simultaneously measured, however, under local hidden variable models, they must simultaneously hold premeasurement values, implying the existence of a joint probability distribution. We study the joint distributions
Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler
We prove the existence of a universal recovery channel that approximately recovers states on a v. Neumann subalgebra when the change in relative entropy, with respect to a fixed reference state, is small. Our result is a generalization of previous re