ترغب بنشر مسار تعليمي؟ اضغط هنا

{it Ab initio} approach to the lattice softening of an Al slab driven by collective electronic excitations after ultrashort laser pulse irradiation

50   0   0.0 ( 0 )
 نشر من قبل Hiroki Katow
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in ultrashort laser pulse techniques have opened up a wide variety of applications in both fundamental physics and industrial fields. In this work, $ab$ $initio$ molecular dynamics simulations based on time-dependent density functional theory revealed a steady deceleration of lattice distortion propagation in an aluminum slab with increasing laser pulse intensity. Analysis of the interatomic force revealed a significant reduction in the harmonic terms and non-monotonic growth of anharmonicity. This behavior was characterized by spatially non-uniform force screening by plasmons, which is missing from Born--Oppenheimer molecular dynamics, and is consistent with the current interpretation of laser-induced periodic structure patterning. This work provides a semi-quantitative criterion for modifying the phonon properties of non-equilibrium systems.

قيم البحث

اقرأ أيضاً

We show that many-body correlations among excitons originating from the Pauli exclusion principle in a quantum well embedded inside a microcavity provide a possibility to produce pairs of entangled photons by ultrashort laser pulses with a yield of $ sim 10^{-2}$. The quantum-field theoretical two-particle density matrix in second quantization is used to calculate entanglement for arbitrary emission angles. %At time scales where the heavy-light hole splitting is resolved the resonances corresponding to different two-exciton %states develop, which allow for a simple kinematic theory relating the %states of the outgoing photons with the respective two-exciton states. Largest response can be expected at symmetric emission angles for resonances with the heavy-heavy and light-light two-exciton states with remarkably nontrivial dependence of entanglement on the emission angles and on the ellipticity parameters of the excitation. We show that the angle dependence can be tailored by means of the microcavity. Interestingly, the emitted entangled 2-photon states are always in a triplet state.
High intensity laser pulses were recently shown to induce a population inverted transient state in graphene [T. Li et al. Phys. Rev. Lett. 108, 167401 (2012)]. Using a combination of hydrodynamic arguments and a kinetic theory we determine the post-t ransient state relaxation of hot, dense, population inverted electrons towards equilibrium. The cooling rate and charge-imbalance relaxation rate are determined from the Boltzmann-equation including electron-phonon scattering. We show that the relaxation of the population inversion, driven by inter-band scattering processes, is much slower than the relaxation of the electron temperature, which is determined by intra-band scattering processes. This insight may be of relevance for the application of graphene as an optical gain medium.
73 - J. C. Tung , G. Y. Guo 2011
Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {it ab intio} study of the structural, electronic and mag netic properties of all 3$d$ transition metal (TM) freestanding atomic chains and found that Fe and Ni nanowires have a giant magnetic anisotropy energy (MAE), indicating that these nanowires would have applications in high density magnetic data storages. In this paper, we perform density functional calculations for the Fe, Co and Ni linear atomic chains on Cu(001) surface within the generalized gradient approximation, in order to investigate how the substrates would affect the magnetic properties of the nanowires. We find that Fe, Co and Ni linear chains on Cu(001) surface still have a stable or metastable ferromagnetic state. When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3$d$ TM chains, whilst significant orbital magnetic moments appear and also are direction-dependent. Finally, we find that the MAE for Fe, and Co remains large, i.e., being not much affected by the presence of Cu substrate.
The first part of this article centers on the fact that key features of the dynamical response of weakly-correlated materials (the alkalis, Al), have been found experimentally to differ qualitatively from simple-model behavior. In the absence of ab i nitio theory, the surprises embodied in the experimental data were imputed to effects of dynamical correlations. We summarize results of ab initio investigations of linear response, performed within time-dependent density-functional theory (TDDFT), in which the unexpected features of the observed spectra are shown to be due to band-structure effects. Contrary to conventional wisdom, the response cannot be understood universally, in terms of a simple scaling with the density, on going from metal to metal (e.g., through the alkali series) --even the shape of the dispersion curve for the plasmon energy is system-specific. The second part of this article starts out with the observation that a similar ab initio study of systems with more complex electronic structures would require the availability of a realistic approximation for the dynamical many-body kernel entering the density-response function in TDDFT. Thus, we outline a diagrammatic alternative, framed within the conserving-approximation method of Baym and Kadanoff. Using as a benchmark the band gap of Si obtained in the GW approximation, together with a diagrammatic (and conserving) solution of the ensuing Bethe-Salpeter equation, we discuss issues involving conservation laws, self-consistency, and sum rules. These conceptual issues are particularly important for the development of ab initio methods for the study of dynamical response and quasiparticle band structure of strongly-correlated materials. We argue that inclusion of short-range correlations absent in the GW approximation is a must, even in Si.
105 - B. S. Hu , Q. Wu , J. G. Li 2020
Gamow shell model (GSM) is usually performed within the Woods-Saxon (WS) basis in which the WS parameters need to be determined by fitting experimental single-particle energies including their resonance widths. In the multi-shell case, such a fit is difficult due to the lack of experimental data of cross-shell single-particle energies and widths. In this paper, we develop an {it ab-initio} GSM by introducing the Gamow Hartree-Fock (GHF) basis that is obtained using the same interaction as the one used in the construction of the shell-model Hamiltonian. GSM makes use of the complex-momentum Berggren representation, then including resonance and continuum components. Hence, GSM gives a good description of weakly bound and unbound nuclei. Starting from chiral effective field theory and employing many-body perturbation theory (MBPT) (called nondegenerate $hat Q$-box folded-diagram renormalization) in the GHF basis, a multi-shell Hamiltonian ({it sd-pf} shells in this work) can be constructed. The single-particle energies and their resonance widths can also been obtained using MBPT. We investigated $^{23-28}$O and $^{23-31}$F isotopes, for which multi-shell calculations are necessary. Calculations show that continuum effects and the inclusion of the {it pf} shell are important elements to understand the structure of nuclei close to and beyond driplines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا