ترغب بنشر مسار تعليمي؟ اضغط هنا

A Posteriori Probabilistic Bounds of Convex Scenario Programs with Validation Tests

184   0   0.0 ( 0 )
 نشر من قبل Chao Shang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scenario programs have established themselves as efficient tools towards decision-making under uncertainty. To assess the quality of scenario-based solutions a posteriori, validation tests based on Bernoulli trials have been widely adopted in practice. However, to reach a theoretically reliable judgement of risk, one typically needs to collect massive validation samples. In this work, we propose new a posteriori bounds for convex scenario programs with validation tests, which are dependent on both realizations of support constraints and performance on out-of-sample validation data. The proposed bounds enjoy wide generality in that many existing theoretical results can be incorporated as particular cases. To facilitate practical use, a systematic approach for parameterizing a posteriori probability bounds is also developed, which is shown to possess a variety of desirable properties allowing for easy implementations and clear interpretations. By synthesizing comprehensive information about support constraints and validation tests, improved risk evaluation can be achieved for randomized solutions in comparison with existing a posteriori bounds. Case studies on controller design of aircraft lateral motion are presented to validate the effectiveness of the proposed a posteriori bounds.



قيم البحث

اقرأ أيضاً

We revisit the so-called sampling and discarding approach used to quantify the probability of violation of a scenario solution when some of the original samples are allowed to be discarded. We propose a scheme that consists of a cascade of optimizati on problems, where at each step we remove a superset of the active constraints. By relying on results from compression learning theory, we produce a tighter bound for the probability of violation of the obtained solution than existing state-of-the-art one. Besides, we show that the proposed bound is tight by exhibiting a class of optimization problems that achieves the given upper bound. The improvement of the proposed methodology with respect to a scenario discarding scheme based on a greedy removal strategy is shown by means of an analytic example and a resource sharing linear program.
We study decentralized non-convex finite-sum minimization problems described over a network of nodes, where each node possesses a local batch of data samples. In this context, we analyze a single-timescale randomized incremental gradient method, call ed GT-SAGA. GT-SAGA is computationally efficient as it evaluates one component gradient per node per iteration and achieves provably fast and robust performance by leveraging node-level variance reduction and network-level gradient tracking. For general smooth non-convex problems, we show the almost sure and mean-squared convergence of GT-SAGA to a first-order stationary point and further describe regimes of practical significance where it outperforms the existing approaches and achieves a network topology-independent iteration complexity respectively. When the global function satisfies the Polyak-Lojaciewisz condition, we show that GT-SAGA exhibits linear convergence to an optimal solution in expectation and describe regimes of practical interest where the performance is network topology-independent and improves upon the existing methods. Numerical experiments are included to highlight the main convergence aspects of GT-SAGA in non-convex settings.
We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to recover feasible points satisfying these bounds. These error bounds are proportional to the rate of growth of the objective with the target cardinality, which means in particular that the relaxation is nearly tight as soon as the target cardinality is large enough so that only uninformative features are added.
We show how to efficiently compute the derivative (when it exists) of the solution map of log-log convex programs (LLCPs). These are nonconvex, nonsmooth optimization problems with positive variables that become convex when the variables, objective f unctions, and constraint functions are replaced with their logs. We focus specifically on LLCPs generated by disciplined geometric programming, a grammar consisting of a set of atomic functions with known log-log curvature and a composition rule for combining them. We represent a parametrized LLCP as the composition of a smooth transformation of parameters, a convex optimization problem, and an exponential transformation of the convex optimization problems solution. The derivative of this composition can be computed efficiently, using recently developed methods for differentiating through convex optimization problems. We implement our method in CVXPY, a Python-embedded modeling language and rewriting system for convex optimization. In just a few lines of code, a user can specify a parametrized LLCP, solve it, and evaluate the derivative or its adjoint at a vector. This makes it possible to conduct sensitivity analyses of solutions, given perturbations to the parameters, and to compute the gradient of a function of the solution with respect to the parameters. We use the adjoint of the derivative to implement differentiable log-log convex optimization layers in PyTorch and TensorFlow. Finally, we present applications to designing queuing systems and fitting structured prediction models.
86 - Zichong Li , Yangyang Xu 2020
First-order methods (FOMs) have been widely used for solving large-scale problems. A majority of existing works focus on problems without constraint or with simple constraints. Several recent works have studied FOMs for problems with complicated func tional constraints. In this paper, we design a novel augmented Lagrangian (AL) based FOM for solving problems with non-convex objective and convex constraint functions. The new method follows the framework of the proximal point (PP) method. On approximately solving PP subproblems, it mixes the usage of the inexact AL method (iALM) and the quadratic penalty method, while the latter is always fed with estimated multipliers by the iALM. We show a complexity result of $O(varepsilon^{-frac{5}{2}}|logvarepsilon|)$ for the proposed method to achieve an $varepsilon$-KKT point. This is the best known result. Theoretically, the hybrid method has lower iteration-complexity requirement than its counterpart that only uses iALM to solve PP subproblems, and numerically, it can perform significantly better than a pure-penalty-based method. Numerical experiments are conducted on nonconvex linearly constrained quadratic programs and nonconvex QCQP. The numerical results demonstrate the efficiency of the proposed methods over existing ones.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا