ﻻ يوجد ملخص باللغة العربية
We have developed a scanning photoluminescence technique that can directly map out the local two-dimensional electron density with a relative accuracy of $sim2.2times10^8$ cm$^{-2}$. The validity of this approach is confirmed by the observation of the expected density gradient in a high-quality GaAs quantum well sample that was not rotated during the molecular beam epitaxy of its spacer layer. In addition to this global variation in electron density, we observe local density fluctuations across the sample. These random density fluctuations are also seen in samples that were continuously rotated during growth, and we attribute them to residual space charges at the substrate-epitaxy interface. This is corroborated by the fact that the average magnitude of density fluctuations is increased to $sim9times10^{9}$ cm$^{-2}$ from $sim1.2times10^9$ cm$^{-2}$ when the buffer layer between the substrate and the quantum well is decreased by a factor of seven. Our data provide direct evidence for local density inhomogeneities even in very high-quality two-dimensional carrier systems.
In a previous paper we suggested that a macroscopic force field applied across a two-dimensional electron gas channel could induce a microscopic charge density wave as soon as the proper compressibility becomes negative, which happens at densities mu
We demonstrate tunable transverse rectification in a density-modulated two-dimensional electron gas (2DEG). The density modulation is induced by two surface gates, running in parallel along a narrow stripe of 2DEG. A transverse voltage in the directi
Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the single particle
Two-dimensional electrons confined to GaAs quantum wells are hallmark platforms for probing electron-electron interaction. Many key observations have been made in these systems as sample quality improved over the years. Here, we present a breakthroug
We report electrical conductivity $sigma$ measurements on a range of two-dimensional electron gases (2DEGs) of varying linear extent. Intriguingly, at low temperatures ($T$) and low carrier density ($n_{mathrm{s}}$) we find the behavior to be consist