ﻻ يوجد ملخص باللغة العربية
During the last decade, numerous and varied observations, along with increasingly sophisticated numerical simulations, have awakened astronomers to the central role the circumgalactic medium (CGM) plays in regulating galaxy evolution. It contains the majority of the baryonic matter associated with a galaxy, along with most of the metals, and must continually replenish the star forming gas in galaxies that continue to sustain star formation. And while the CGM is complex, containing gas ranging over orders of magnitude in temperature and density, a simple emergent property may be governing its structure and role. Observations increasingly suggest that the ambient CGM pressure cannot exceed the limit at which cold clouds start to condense out and precipitate toward the center of the potential well. If feedback fueled by those clouds then heats the CGM and causes it to expand, the pressure will drop and the rain will diminish. Such a feedback loop tends to suspend the CGM at the threshold pressure for precipitation. The coming decade will offer many opportunities to test this potentially fundamental principle of galaxy evolution.
Cosmic gas cycles in and out of galaxies, but outside of galaxies it is difficult to observe except for the absorption lines that circumgalactic clouds leave in the spectra of background quasars. Using photoionization modeling of those lines to deter
This paper presents a study of the galactic environment of a chemically-pristine (<0.6% solar metallicity) Lyman Limit system (LLS) discovered along the sightline toward QSO SDSSJ135726.27+043541.4 (zQSO=1.233) at projected distance d=126 physical kp
We consider the effects of radio-wave scattering by cool ionized clumps ($Tsim 10^4,$K) in circumgalactic media (CGM). The existence of such clumps are inferred from intervening quasar absorption systems, but have long been something of a theoretical
We use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to explore the properties and origin of cold circumgalactic medium (CGM) gas around massive galaxies (M* > 10^11 Msun) at intermediate redshift (z~0.5). We discover a sign
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z >= 3, utilising a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman-alph