ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing isomorphism of circular-arc graphs in polynomial time

101   0   0.0 ( 0 )
 نشر من قبل Peter Zeman
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A graph is said to be circular-arc if the vertices can be associated with arcs of a circle so that two vertices are adjacent if and only if the corresponding arcs overlap. It is proved that the isomorphism of circular-arc graphs can be tested by the Weisfeiler-Leman algorithm after individualization of two vertices.



قيم البحث

اقرأ أيضاً

The partial representation extension problem generalizes the recognition problem for classes of graphs defined in terms of vertex representations. We exhibit circular-arc graphs as the first example of a graph class where the recognition is polynomia lly solvable while the representation extension problem is NP-complete. In this setting, several arcs are predrawn and we ask whether this partial representation can be completed. We complement this hardness argument with tractability results of the representation extension problem on various subclasses of circular-arc graphs, most notably on all variants of Helly circular-arc graphs. In particular, we give linear-time algorithms for extending normal proper Helly and proper Helly representations. For normal Helly circular-arc representations we give an $O(n^3)$-time algorithm. Surprisingly, for Helly representations, the complexity hinges on the seemingly irrelevant detail of whether the predrawn arcs have distinct or non-distinct endpoints: In the former case the previous algorithm can be extended, whereas the latter case turns out to be NP-complete. We also prove that representation extension problem of unit circular-arc graphs is NP-complete.
The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection graphs for families of circular ar cs that satisfy the Helly property. We solve the isomorphism problem for this class in logarithmic space. If an input graph has a Helly circular-arc model, our algorithm constructs it canonically, which means that the models constructed for isomorphic graphs are equal.
Let ${frak K}$ be a class of combinatorial objects invariant with respect to a given regular cyclic group. It is proved that the isomorphism of any two objects $X,Yin{frak K}$ can be tested in polynomial time in sizes of $X$ and $Y$.
A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly(n).
It is known that testing isomorphism of chordal graphs is as hard as the general graph isomorphism problem. Every chordal graph can be represented as the intersection graph of some subtrees of a tree. The leafage of a chordal graph, is defined to be the minimum number of leaves in the representing tree. We construct a fixed-parameter tractable algorithm testing isomorphism of chordal graphs with bounded leafage. The key point is a fixed-parameter tractable algorithm finding the automorphism group of a colored order-3 hypergraph with bounded sizes of color classes of vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا