ﻻ يوجد ملخص باللغة العربية
We study the generic behavior of the method of successive approximations for set-valued mappings in Banach spaces. We consider, in particular, the case of those set-valued mappings which are defined by pairs of nonexpansive mappings and give a positive answer to a question raised by Francesco S. de Blasi.
It is known in Hilbert space frame theory that a Bessel sequence can be expanded to a frame. Contrary to Hilbert space situation, using a result of Casazza and Christensen, we show that there are Banach spaces and approximate Bessel sequences which c
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a
Assume that $mathcal{I}$ is an ideal on $mathbb{N}$, and $sum_n x_n$ is a divergent series in a Banach space $X$. We study the Baire category, and the measure of the set $A(mathcal{I}):=left{t in {0,1}^{mathbb{N}} colon sum_n t(n)x_n textrm{ is } mat
For every $alpha<omega_1$ we establish the existence of a separable Banach space whose Szlenk index is $omega^{alphaomega+1}$ and which is universal for all separable Banach spaces whose Szlenk-index does not exceed $omega^{alphaomega}$. In order to
We introduce the class of slicely countably determined Banach spaces which contains in particular all spaces with the RNP and all spaces without copies of $ell_1$. We present many examples and several properties of this class. We give some applicatio