ﻻ يوجد ملخص باللغة العربية
We observe a crossover from electron-phonon (ep) coupling limited energy relaxation to that governed by thermal boundary resistance (pp) in copper films at sub-kelvin temperatures. Our measurement yields a quantitative picture of heat currents, in terms of temperature dependences and magnitudes, in both ep and pp limited regimes, respectively. We show that by adding a third layer in between the copper film and the substrate, the thermal boundary resistance is increased fourfold, consistent with an assumed series connection of thermal resistances.
We have employed noise thermometry for investigations of thermal relaxation between the electrons and the substrate in nanowires patterned from 40-nm-thick titanium film on top of silicon wafers covered by a native oxide. By controlling the electroni
We use the time-resolved magneto-optical Kerr effect (TRMOKE) to measure the local temperature and heat flow dynamics in ferromagnetic SrRuO3 thin films. After heating by a pump pulse, the film temperature decays exponentially, indicating that the he
We study the heat relaxation in current biased metallic films in the regime of strong electron-phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-depe
The performance of low temperature detectors utilizing thermal effects is determined by their energy relaxation properties. Usually, heat transport experiments in mesoscopic structures are carried out in the steady-state, where temperature gradients
We consider the deformation potential mechanism of the electron-phonon coupling in metal films and investigate the intensity of the associated heat transfer between the electron and phonon subsystems. The focus is on the temperature region below dime