ترغب بنشر مسار تعليمي؟ اضغط هنا

Rational Strain Engineering in Delafossite Oxides for Highly Efficient Hydrogen Evolution Catalysis in Acidic Media

285   0   0.0 ( 0 )
 نشر من قبل Filip Podjaski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rational design of hydrogen evolution reaction (HER) electrocatalysts which are competitive with platinum is an outstanding challenge to make power-to-gas technologies economically viable. Here, we introduce the delafossites PdCrO$_2$, PdCoO$_2$ and PtCoO$_2$ as a new family of electrocatalysts for the HER in acidic media. We show that in PdCoO$_2$ the inherently strained Pd metal sublattice acts as a pseudomorphic template for the growth of a strained (by +2.3%) Pd rich capping layer under reductive conditions. The surface modification continuously improves the electrocatalytic activity by simultaneously increasing the exchange current density j$_0$ from 2 to 5 mA/cm$^2_{geo}$ and by reducing the Tafel slope down to 38 mV/decade, leading to overpotentials $eta_{10}$ < 15 mV for 10 mA/cm$^2_{geo}$, superior to bulk platinum. The greatly improved activity is attributed to the in-situ stabilization of a $beta$-palladium hydride phase with drastically enhanced surface catalytic properties with respect to pure or nanostructured palladium. These findings illustrate how operando induced electrodissolution can be used as a top-down design concept for rational surface and property engineering through the strain-stabilized formation of catalytically active phases.

قيم البحث

اقرأ أيضاً

Methanol occupies a central role in chemical synthesis and is considered an ideal candidate for cleaner fuel storage and transportation. It can be catalyzed from water and volatile organic compounds such as carbon dioxide, thereby offering an attract ive solution for reducing carbon emissions. However molecular-level experimental observations of the catalytic process are scarce, and most existing catalysts tend to rely on empirically optimized, expensive and complex nano- composite materials. This lack of molecular-level insights has precluded the development of simpler, more cost-effective alternatives. Here we show that graphite immersed in ultrapure water is able to spontaneously catalyze methanol from volatile organic compounds in ambient conditions. Using single-molecule resolution atomic force microscopy (AFM) in liquid, we directly observe the formation and evolution of methanol-water nanostructures at the surface of graphite. These molecularly ordered structures nucleate near catalytically active surface features such as atomic step edges and grow progressively as further methanol is being catalyzed. Complementary nuclear magnetic resonance analysis of the liquid confirms the formation of methanol and quantifies its concentration. We also show that electric fields significantly enhance the catalysis rate, even when as small as that induced by the natural surface potential of the silicon AFM tip. These findings could have a significant impact on the development of organic catalysts and on the function of nanoscale carbon devices.
We developed planar multilayered photonic-plasmonic structures, which support topologically protected optical states on the interface between metal and dielectric materials, known as optical Tamm states. Coupling of incident light to the Tamm states can result in perfect absorption within one of several narrow frequency bands, which is accompanied by a singular behavior of the phase of electromagnetic field. In the case of near-perfect absorptance, very fast local variation of the phase can still be engineered. In this work, we theoretically and experimentally demonstrate how these drastic phase changes can improve sensitivity of optical sensors. A planar Tamm absorber was fabricated and used to demonstrate remote near-singular-phase temperature sensing with an over an order of magnitude improvement in sensor sensitivity and over two orders of magnitude improvement in the figure of merit over the standard approach of measuring shifts of resonant features in the reflectance spectra of the same absorber. Our experimentally demonstrated phase-to-amplitude detection sensitivity improvement nearly doubles that of state-of-the-art nano-patterned plasmonic singular-phase detectors, with further improvements possible via more precise fabrication. Tamm perfect absorbers form the basis for robust planar sensing platforms with tunable spectral characteristics, which do not rely on low-throughput nano-patterning techniques.
Large scale production of hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious nickel-based catalysts work well at low current densities, they need large overpotentials at high current densities that hinders their potential applications in practical industry. Here we report a hydroxide-mediated nickel based electrocatalyst for high current density hydrogen evolution, which delivers a current density of 1000 mA cm-2 at an overpotential of 98 mV. Combined X-ray absorption spectroscopy and high resolution X-ray photoelectron spectroscopy results show charge redistribution of nickel sites caused by Mo and surface FeOx clusters, which can stabilize the surface nickel hydroxide at high current densities for promoting water dissociation step. Such catalyst is synthesized at the metre scale and shows a current density of 500 mA cm-2 at 1.56 V in the overall water splitting, which demonstrate its potential for practical use. This work highlights a charge-engineering strategy for rational design of catalysts that work well at high current densities.
The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel non-equilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TM Os) provide an interesting playground in which the correlations among the charges in the metal $d$-orbitals give rise to a wealth of intriguing electronic and thermodynamic properties involving the spin, charge, lattice and orbital orders. Furthermore, the physical properties of TMOs can be engineered at the atomic level, thus providing the platform to investigate the transport phenomena on timescales of the order of the intrinsic decoherence time of the charge excitations. Here, we review and discuss three paradigmatic examples of transient emerging properties that are expected to open new fields of research: i) the creation of non-thermal magnetic states in spin-orbit Mott insulators; ii) the possible exploitation of quantum paths for the transport and collection of charge excitations in TMO-based few-monolayers devices; iii) the transient wave-like behavior of the temperature field in strongly anisotropic TMOs.
Polymer composite electrolytes of Nafion and phosphotungstic acid (PWA) are fabricated and analyzed using electrochemical strain microscopy (ESM) and conductive atomic force microscopy (C-AFM) to visualize hydrophilic ion channels near the surface, w hich are composed of water and sulfonic acid groups. The results indicate that the fibrillar objects in ESM image, without significant changes in topography, are hydrophilic ion channels and additional ion channels formed by interaction between PWA and sulfonic groups in Nafion. In this study, the buried ion channels lying under the surface are probed as well as the inlet and outlet of the channels on the surface through combined use of ESM and C-AFM. The results further enhance the understanding of ionic conduction in composite polymer electrolytes in various fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا