ﻻ يوجد ملخص باللغة العربية
We explore the effect of magnetic fields on the vertical distribution and multiphase structure of the supernova-driven interstellar medium (ISM) in simulations that admit dynamo action. As the magnetic field is amplified to become dynamically significant, gas becomes cooler and its distribution in the disc becomes more homogeneous. We attribute this to magnetic quenching of vertical velocity, which leads to a decrease in the cooling length of hot gas. A non-monotonic vertical distribution of the large-scale magnetic field strength, with the maximum at |z| $approx$ 300 pc causes a downward pressure gradient below the maximum which acts against outflow driven by SN explosions, while it provides pressure support above the maximum.
The role of magnetic fields in the multi-phase interstellar medium (ISM) is explored using magnetohydrodynamic (MHD) simulations that include energy injection by supernova (SN) explosions and allow for dynamo action. Apart from providing additional p
The forcing of interstellar turbulence, driven mainly by supernova explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Several earli
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the comple
We present three-dimensional magneto-hydrodynamical simulations of the self-gravitating interstellar medium (ISM) in a periodic (256 pc)$^3$ box with a mean number density of 0.5 cm$^{-3}$. At a fixed supernova rate we investigate the multi-phase ISM
We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (HI) in disc galaxies. For our analysis, we carry out $sim 4.6$pc resolution $N$-body+adaptive mesh refinement (AMR) hydrodynamic simulations of