ﻻ يوجد ملخص باللغة العربية
Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating development of application specific implementations. This paper introduces posterior-based proposals (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generates large joint updates in parameter and latent variable space, whilst retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs / random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. Whilst different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs therefore represent an additional general purpose technique that can be usefully applied in a wide variety of contexts.
In Bayesian inference, predictive distributions are typically in the form of samples generated via Markov chain Monte Carlo (MCMC) or related algorithms. In this paper, we conduct a systematic analysis of how to make and evaluate probabilistic foreca
A novel class of non-reversible Markov chain Monte Carlo schemes relying on continuous-time piecewise-deterministic Markov Processes has recently emerged. In these algorithms, the state of the Markov process evolves according to a deterministic dynam
We propose Adaptive Incremental Mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. While adaptive MCMC methods usually update a parametric proposal kernel w
Models with intractable normalizing functions have numerous applications ranging from network models to image analysis to spatial point processes. Because the normalizing constants are functions of the parameters of interest, standard Markov chain Mo
Markov Chain Monte Carlo (MCMC) requires to evaluate the full data likelihood at different parameter values iteratively and is often computationally infeasible for large data sets. In this paper, we propose to approximate the log-likelihood with subs