ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast decoupling of atomic sublattices in a charge-density-wave material

172   0   0.0 ( 0 )
 نشر من قبل Jing Tao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic rearrangements within crystals lie at the foundation of electron-phonon-coupled phenomena such as metal-insulator transition and superconductivity. Advanced laser-pump-probe studies have recently focused on various charge-density-wave (CDW) materials to sharpen our understanding of the charge-lattice entanglement, where non-thermal melting of the CDW state is evident from the enhanced Bragg diffraction peak intensities - attributed to the dominance of the metal-atom dynamics over the nonmetal-anion one. Here using ultrafast MeV electron diffraction on the prototypical CDW material 1T-TaSeTe, we observe an unusual coexistence of systematically enhanced and suppressed Bragg peak intensities upon the CDW suppression, indicating a dominance of nonmetal-anion dynamics during photoexcitation. By tracking these atomic trajectories quantitatively through the ultrafast process, we identify a transient state that manifests itself as an unexpected decoupling of the Ta and Se/Te sublattices. These findings unambiguously unveil a new kind of laser manipulations of lattice order parameters, which has potentials in creating new quantum states and discerning hidden phases such as intra-unit-cell orders.

قيم البحث

اقرأ أيضاً

The local structure of CeTe3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function (PDF) analysis of x-ray diffraction data. Local atomic distortions in the Te-nets due to the CDW are large r than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures are explained by the discommensurated nature of the CDW since the PDF is sensitive to the local displacements within the commensurate regions whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system.
Topological physics and strong electron-electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the sin gle-particle band structure is modified by strong interactions. We here demonstrate that the room-temperature phase of (TaSe$_4$)$_2$I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-1D structure, (TaSe$_4$)$_2$I hosts an established CDW instability just below room temperature. Using X-ray diffraction, angle-resolved photoemission spectroscopy, and first-principles calculations, we find that the CDW in (TaSe$_4$)$_2$I couples the bulk Weyl points and opens a band gap. The correlation-driven topological phase transition in (TaSe$_4$)$_2$I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.
97 - B. Q. Lv , Alfred Zong , D. Wu 2021
Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe4. By combining transport , photoemission, diffraction, and x-ray absorption measurements, we observed that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids. The transition has an origin distinct from known mechanisms, lying entirely within the incommensurate charge-density-wave (CDW) phase of EuTe4 with no change in the CDW modulation periodicity. We interpret the hysteresis as an unusual switching of the relative CDW phases in different layers, a phenomenon unique to quasi-2D compounds that is not present in either purely 2D or strongly-coupled 3D systems. Our findings challenge the established theories on metastable states in density wave systems, pushing the boundary of understanding hysteretic transitions in a broken-symmetry state.
Unconventional quasiparticle excitations in condensed matter systems have become one of the most important research frontiers. Beyond two- and fourfold degenerate Weyl and Dirac fermions, three-, six- and eightfold symmetry protected degeneracies hav e been predicted however remain challenging to realize in solid state materials. Here, charge density wave compound TaTe4 is proposed to hold eightfold fermionic excitation and Dirac point in energy bands. High quality TaTe4 single crystals are prepared, where the charge density wave is revealed by directly imaging the atomic structure and a pseudogap of about 45 meV on the surface. Shubnikov de-Haas oscillations of TaTe4 are consistent with band structure calculation. Scanning tunneling microscopy reveals atomic step edge states on the surface of TaTe4. This work uncovers that charge density wave is able to induce new topological phases and sheds new light on the novel excitations in condensed matter materials.
Charge density wave (CDW) order is an emergent quantum phase that is characterized by a periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here we uncover a novel inverted CDW state by using a f emtosecond laser to coherently over-drive the unique star-of-David lattice distortion in 1T-TaSe$_2$. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and time-dependent density functional theory, and validate that it is associated with a unique lattice and charge arrangement never before realized. The dynamic electronic structure further reveals its novel properties, that are characterized by an increased density of states near the Fermi level, high metallicity, and altered electron-phonon couplings. Our results demonstrate how ultrafast lasers can be used to create unique states in materials, by manipulating charge-lattice orders and couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا