ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable magnetism of a hexagonal Anderson droplet on the triangular lattice

164   0   0.0 ( 0 )
 نشر من قبل Mi Jiang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mi Jiang




اسأل ChatGPT حول البحث

Motivated by recent progress on quantum engineered Kondo lattices, we numerically investigated the local magnetic properties of a hexagonal Anderson droplet consisting of multiple rings of magnetic atoms periodically arrayed on a triangular lattice. We demonstrated the tunability of the magnetic properties via their evolution with the droplet geometry for two types of systems with distinct local orbital occupancy profile. We found that the local susceptibility of the droplet center of some types of droplets can be remarkably enhanced in contrast to the conventionally rapid decrease due to spin correlations of surrounding droplet rings. The tunability of the magnetic properties is attributed to the charge redistribution with varying the droplet geometry enforced by the confined lattice with open boundary. Our simulations complements the exploration of the novel artificial tunability of engineered lattice systems.



قيم البحث

اقرأ أيضاً

We consider a system of 2D fermions on a triangular lattice with well separated electron and hole pockets of similar sizes, centered at certain high-symmetry-points in the Brillouin zone. We first analyze Stoner-type spin-density-wave (SDW) magnetism . We show that SDW order is degenerate at the mean-field level. Beyond mean-field, the degeneracy is lifted and is either $120^{circ}$ triangular order (same as for localized spins), or a collinear order with antiferromagnetic spin arrangement on two-thirds of sites, and non-magnetic on the rest of sites. We also study a time-reversal symmetric directional spin bond order, which emerges when some interactions are repulsive and some are attractive. We show that this order is also degenerate at a mean-field level, but beyond mean-field the degeneracy is again lifted. We next consider the evolution of a magnetic order in a magnetic field starting from an SDW state in zero field. We show that a field gives rise to a canting of an SDW spin configuration. In addition, it necessarily triggers the directional bond order, which, we argue, is linearly coupled to the SDW order in a finite field. We derive the corresponding term in the Free energy. Finally, we consider the interplay between an SDW order and superconductivity and charge order. For this, we analyze the flow of the couplings within parquet renormalization group (pRG) scheme. We show that magnetism wins if all interactions are repulsive and there is little energy space for pRG to develop. However, if system parameters are such that pRG runs over a wide range of energies, the system may develop either superconductivity or an unconventional charge order, which breaks time-reversal symmetry.
326 - Q. Huang , R. Rawl , W. W. Xie 2021
With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutro n scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9 with Sr doping on non-magnetic Ba2+ ion sites. The results show that Ba2.87Sr0.13CoSb2O9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120-degree spin structure at zero field with reduced ordered moment as 1.24{mu}B/Co; (iii) a series of spin state transitions for both H // ab-plane and H // c-axis. For H // ab-plane, the magnetization plateau feature related to the up-up-down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba3CoSb2O9, which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.
Strong spin-lattice coupling and prominent frustration effects observed in the 50$%$ Fe-doped frustrated hexagonal ($h$)LuMnO$_3$ are reported. A N{e}el transition at $T_{mathrm N} approx$ 112~K and a possible spin re-orientation transition at $T_{ma thrm {SR}} approx$ 55~K are observed in the magnetization data. From neutron powder diffraction data, the nuclear structure at and below 300~K was refined in polar $P6_3cm$ space group. While the magnetic structure of LuMnO$_3$ belongs to the $Gamma_4$ ($P6_3cm$) representation, that of LuFe$_{0.5}$Mn$_{0.5}$O$_3$ belongs to $Gamma_1$ ($P6_3cm$) which is supported by the strong intensity for the $mathbf{(100)}$ reflection and also judging by the presence of spin-lattice coupling. The refined atomic positions for Lu and Mn/Fe indicate significant atomic displacements at $T_{mathrm N}$ and $T_{mathrm {SR}}$ which confirms strong spin-lattice coupling. Our results complement the discovery of room temperature multiferroicity in thin films of $h$LuFeO$_3$ and would give impetus to study LuFe$_{1-x}$Mn$_x$O$_3$ systems as potential multiferroics where electric polarization is linked to giant atomic displacements.
Hubbard-type models on the hexagonal lattice are of great interest, as they provide realistic descriptions of graphene and other related materials. Hybrid Monte Carlo simulations offer a first-principles approach to study their phase structure. Here, we review the present status of our work in this direction.
202 - L. Huijse , D. Mehta , N. Moran 2011
We study a model for itinerant, strongly interacting fermions where a judicious tuning of the interactions leads to a supersymmetric Hamiltonian. On the triangular lattice this model is known to exhibit a property called superfrustration, which is ch aracterized by an extensive ground state entropy. Using a combination of numerical and analytical methods we study various ladder geometries obtained by imposing doubly periodic boundary conditions on the triangular lattice. We compare our results to various bounds on the ground state degeneracy obtained in the literature. For all systems we find that the number of ground states grows exponentially with system size. For two of the models that we study we obtain the exact number of ground states by solving the cohomology problem. For one of these, we find that via a sequence of mappings the entire spectrum can be understood. It exhibits a gapped phase at 1/4 filling and a gapless phase at 1/6 filling and phase separation at intermediate fillings. The gapless phase separates into an exponential number of sectors, where the continuum limit of each sector is described by a superconformal field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا