ﻻ يوجد ملخص باللغة العربية
We study a model for itinerant, strongly interacting fermions where a judicious tuning of the interactions leads to a supersymmetric Hamiltonian. On the triangular lattice this model is known to exhibit a property called superfrustration, which is characterized by an extensive ground state entropy. Using a combination of numerical and analytical methods we study various ladder geometries obtained by imposing doubly periodic boundary conditions on the triangular lattice. We compare our results to various bounds on the ground state degeneracy obtained in the literature. For all systems we find that the number of ground states grows exponentially with system size. For two of the models that we study we obtain the exact number of ground states by solving the cohomology problem. For one of these, we find that via a sequence of mappings the entire spectrum can be understood. It exhibits a gapped phase at 1/4 filling and a gapless phase at 1/6 filling and phase separation at intermediate fillings. The gapless phase separates into an exponential number of sectors, where the continuum limit of each sector is described by a superconformal field theory.
We investigate a semimetal-superconductor phase transition of two-dimensional Dirac electrons at zero temperature by large-scale and essentially unbiased quantum Monte Carlo simulations for the half-filled attractive Hubbard model on the triangular l
We consider a system of 2D fermions on a triangular lattice with well separated electron and hole pockets of similar sizes, centered at certain high-symmetry-points in the Brillouin zone. We first analyze Stoner-type spin-density-wave (SDW) magnetism
We study the Coulomb-Frohlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Frohl
We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry a
To gain a better understanding of the interplay between frustrated long-range interactions and zero-temperature quantum fluctuations, we investigate the ground-state phase diagram of the transverse-field Ising model with algebraically-decaying long-r