ترغب بنشر مسار تعليمي؟ اضغط هنا

ZTF18aalrxas: A Type IIb Supernova from a very extended low-mass progenitor

141   0   0.0 ( 0 )
 نشر من قبل Christoffer Fremling Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility (ZTF). ZTF18aalrxas was discovered while the optical emission was still rising towards the initial cooling peak (0.7 mag over 2 days). Our observations consist of multi-band (UV, optical) light-curves, and optical spectra spanning from $approx0.7$ d to $approx180$ d past the explosion. We use a Monte-Carlo based non-local thermodynamic equilibrium (NLTE) model, that simultanously reproduces both the $rm ^{56}Ni$ powered bolometric light curve and our nebular spectrum. This model is used to constrain the synthesized radioactive nickel mass (0.17 $mathrm{M}_{odot}$) and the total ejecta mass (1.7 $mathrm{M}_{odot}$) of the SN. The cooling emission is modeled using semi-analytical extended envelope models to constrain the progenitor radius ($790-1050$ $mathrm{R}_{odot}$) at the time of explosion. Our nebular spectrum shows signs of interaction with a dense circumstellar medium (CSM), and this spetrum is modeled and analysed to constrain the amount of ejected oxygen ($0.3-0.5$ $mathrm{M}_{odot}$) and the total hydrogen mass ($approx0.15$ $mathrm{M}_{odot}$) in the envelope of the progenitor. The oxygen mass of ZTF18aalrxas is consistent with a low ($12-13$ $mathrm{M}_{odot}$) Zero Age Main Sequence mass progenitor. The light curves and spectra of ZTF18aalrxas are not consistent with massive single star SN Type IIb progenitor models. The presence of an extended hydrogen envelope of low mass, the presence of a dense CSM, the derived ejecta mass, and the late-time oxygen emission can all be explained in a binary model scenario.



قيم البحث

اقرأ أيضاً

We present optical and near-infrared observations of the rapidly evolving supernova (SN) 2017czd that shows hydrogen features. The optical light curves exhibit a short plateau phase ($sim 13$ days in the $R$-band) followed by a rapid decline by $4.5$ mag in $sim 20 mathrm{days}$ after the plateau. The decline rate is larger than those of any standard SNe, and close to those of rapidly evolving transients. The peak absolute magnitude is $-16.8$ mag in the $V$-band, which is within the observed range for SNe IIP and rapidly evolving transients. The spectra of SN 2017czd clearly show the hydrogen features and resemble those of SNe IIP at first. The H$alpha$ line, however, does not evolve much with time and it becomes similar to those in SNe IIb at decline phase. We calculate the synthetic light curves using a SN IIb progenitor which has 16 M$_{odot}$ at the zero-age main sequence and evolves in a binary system. The model with a low explosion energy ($5times 10^{50}$ erg) and a low ${}^{56}$Ni mass ($0.003 mathrm{M}_{odot}$) can reproduce the short plateau phase as well as the sudden drop of the light curve as observed in SN 2017czd. We conclude that SN 2017czd might be the first identified weak explosion from a SN IIb progenitor. We suggest that some rapidly evolving transients can be explained by such a weak explosion of the progenitors with little hydrogen-rich envelope.
ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of $M_V approx -20$ mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of $sim6.0~rm mag~(100 d)^{-1}$. Owing to the weakening of HI and the appearance of HeI in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution show significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesised $rm ^{56}Ni$ mass $M_{rm Ni} sim0.4~M_odot$ and ejecta with high kinetic energy $E_{rm kin} = (7-10) times10^{51} $ erg. Introducing a magnetar central engine still requires $M_{rm Ni} sim0.3~M_odot$ and $E_{rm kin}= 3times10^{51} $ erg. The high $rm ^{56}Ni$ mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high $rm ^{56}Ni$ yields. The earliest spectrum shows flash ionisation features, from which we estimate a mass-loss rate of $ dot{M}approx 2times10^{-4}~rm M_odot~yr^{-1} $. This wind density is too low to power the luminous light curve by ejecta-CSM interaction. We measure expansion velocities as high as $ 17,000 $ km/s for $H_alpha$, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of $1.8-3.4$ $M_odot$ using the [OI] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main sequence mass of $19-26$ $M_odot$.
We report, for the first time, the detection of the Mn-K$alpha$ line in the Type IIb supernova (SN IIb) remnant, Cassiopeia A. Manganese ($^{55}$Mn after decay of $^{55}$Co), a neutron-rich element, together with chromium ($^{52}$Cr after decay of $^ {52}$Fe), is mainly synthesized at the explosive incomplete Si burning regime. Therefore, the Mn/Cr mass ratio with its neutron excess reflects the neutronization at the relevant burning layer during the explosion. Chandras archival X-ray data of Cassiopeia A indicate a low Mn/Cr mass ratio with values in the range 0.10--0.66, which, when compared to one-dimensional SN explosion models, requires that the electron fraction be 0.4990 $lesssim Y_{rm e} lesssim$ 0.5 at the incomplete Si burning layer. An explosion model assuming a solar-metallicity progenitor with a typical explosion energy ($1 times 10^{51}$ erg) fails to reproduce such a high electron fraction. In such models, the explosive Si-burning regime extends only to the Si/O layer established during the progenitors hydrostatic evolution; the $Y_e$ in the Si/O layer is lower than the value required by our observational constraints. We can satisfy the observed Mn/Cr mass ratio if the explosive Si-burning regime were to extend into the O/Ne hydrostatic layer, which has a higher $Y_{rm e}$. This would require an energetic ($> 2 times 10^{51}$ erg) and/or asymmetric explosion of a sub-solar metallicity progenitor ($Z lesssim 0.5Z_{odot}$) for Cassiopeia A. The low initial metallicity can be used to rule out a single-star progenitor, leaving the possibility of a binary progenitor with a compact companion (white dwarf, neutron star or black hole). We discuss the detectability of X-rays from Bondi accretion onto such a compact companion around the explosion site. We also discuss other possible mass-loss scenarios for the progenitor system of Cassiopeia A.
Type IIb Supernova (SN) 2011dh, with conclusive detection of an unprecedented Yellow Supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosi on. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ~500 days after the explosion on Chandra archival data, providing a solidly derived mass loss rate of an YSG progenitor for the first time. We find that the circumstellar media (CSM) should be dense, more than that expected from a Wolf-Rayet (WR) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a WR progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact WR star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass loss rate is 3 x 10^{-6} Msun/year for the mass loss velocity of ~20 km/s in the final ~1,300 years before the explosion. The derived mass loss properties are largely consistent with the standard wind mass loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at >1,300 years before the explosion, is a likely scenario to produce the YSG progenitor.
We present adaptive optics imaging of the core collapse supernova (SN) 2009md, which we use together with archival emph{Hubble Space Telescope} data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude o f $V = -4.63^{+0.3}_{-0.4}$ mag and a colour of $V-I = 2.29^{+0.25}_{-0.39}$ mag, corresponding to a progenitor luminosity of log $L$/L$_{odot}$ $sim4.54pm0.19$ dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with $M = 8.5_{-1.5}^{+6.5}$ M$_{odot}$. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of $^{56}$Ni ejected in the explosion to be $(5.4pm1.3) times 10^{-3}$ M$_{odot}$ from the luminosity on the radioactive tail, which is in agreement with the low $^{56}$Ni masses estimated for other sub-luminous Type IIP SNe. From the lightcurve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log $L$/L$_{odot}$ $sim4.3-5$ dex) and model luminosities after the second-dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core-collapse. This is now the third discovery of a low mass progenitor star producing a low energy explosion and low $^{56}$Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse supernova (7-8 M$_{odot}$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا