ﻻ يوجد ملخص باللغة العربية
The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of the depth of shower maximum $X_{max}$, the shower observable most sensitive to the mass of the primary cosmic ray, to better than 20 g/cm$^2$. With a densely instrumented circular area of roughly 320 m$^2$, LOFAR is targeting for cosmic ray astrophysics in the energy range $10^{16}$ - $10^{18}$ eV. In this contribution we give an overview of the status, recent results, and future plans of cosmic ray detection with the LOFAR radio telescope.
Cosmic rays are routinely measured at LOFAR, both with a dense array of antennas and with the LOFAR Radboud air shower Array (LORA) which is an array of plastic scintillators. In this paper, we present two results relating to the cosmic-ray energy sc
LOFAR (the Low Frequency Array), a distributed digital radio telescope with stations in the Netherlands, Germany, France, Sweden, and the United Kingdom, is designed to enable full-sky monitoring of transient radio sources. These capabilities are ide
The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first $sim 2,mathrm{years}$ of observing, 4
This is a collection of papers that have been contributed by the LOFAR Cosmic Ray Key Science Project (CRKSP) to the 36th International Cosmic Ray Conference held in Madison, Wisconsin, on July 24th to August 1st, 2019 (ICRC 2019). All papers contain
Contributions of the LOFAR Cosmic Ray Key Science Project to the 35th International Cosmic Ray Conference (ICRC 2017)