ترغب بنشر مسار تعليمي؟ اضغط هنا

LOFAR: Detecting Cosmic Rays with a Radio Telescope

164   0   0.0 ( 0 )
 نشر من قبل John Kelley
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LOFAR (the Low Frequency Array), a distributed digital radio telescope with stations in the Netherlands, Germany, France, Sweden, and the United Kingdom, is designed to enable full-sky monitoring of transient radio sources. These capabilities are ideal for the detection of broadband radio pulses generated in cosmic ray air showers. The core of LOFAR consists of 24 stations within 4 square kilometers, and each station contains 96 low-band antennas and 48 high-band antennas. This dense instrumentation will allow detailed studies of the lateral distribution of the radio signal in a frequency range of 10-250 MHz. Such studies are key to understanding the various radio emission mechanisms within the air shower, as well as for determining the potential of the radio technique for primary particle identification. We present the status of the LOFAR cosmic ray program, including the station design and hardware, the triggering and filtering schemes, and our initial observations of cosmic-ray-induced radio pulses.



قيم البحث

اقرأ أيضاً

The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first $sim 2,mathrm{years}$ of observing, 4 05 cosmic-ray events in the energy range of $10^{16} - 10^{18},mathrm{eV}$ have been detected in the band from $30 - 80,mathrm{MHz}$. Each of these air showers is registered with up to $sim1000$ independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.
97 - T Winchen , A Bonardi , S Buitink 2019
The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of th e depth of shower maximum $X_{max}$, the shower observable most sensitive to the mass of the primary cosmic ray, to better than 20 g/cm$^2$. With a densely instrumented circular area of roughly 320 m$^2$, LOFAR is targeting for cosmic ray astrophysics in the energy range $10^{16}$ - $10^{18}$ eV. In this contribution we give an overview of the status, recent results, and future plans of cosmic ray detection with the LOFAR radio telescope.
Cosmic rays are routinely measured at LOFAR, both with a dense array of antennas and with the LOFAR Radboud air shower Array (LORA) which is an array of plastic scintillators. In this paper, we present two results relating to the cosmic-ray energy sc ale of LOFAR. First, we present the reconstruction of cosmic-ray energy using radio and particle techniques along with a discussion of the event-by-event and absolute scale uncertainties. The resulting energies reconstructed with each method are shown to be in good agreement, and because the radio-based reconstructed energy has smaller uncertainty on an event-to-event basis, LOFAR analyses will use that technique in the future. Second, we present the radiation energy of air showers measured at LOFAR and demonstrate how radiation energy can be used to compare the energy scales of different experiments. The radiation energy scales quadratically with the electromagnetic energy in an air shower, which can in turn be related to the energy of the primary particle. Once the local magnetic field is accounted for, the radiation energy allows for a direct comparison between the LORA particle-based energy scale and that of the Pierre Auger Observatory. They are shown to agree to within (6$pm$20)% for a radiation energy of 1 MeV, where the uncertainty on the comparison is dominated by the antenna calibrations of each experiment. This study motivates the development of a portable radio array which will be used to cross-calibrate the energy scales of different experiments using radiation energy and the same antennas, thereby significantly reducing the uncertainty on the comparison.
KLYPVE-EUSO (K-EUSO) is a planned orbital detector of ultra-high-energy cosmic rays (UHECRs), which is to be deployed on board the International Space Station. K-EUSO is expected to have a uniform exposure over the celestial sphere and register from 120 to 500 UHECRs at energies above 57 EeV in a 2-year mission. We employed the TransportCR and CRPropa 3 packages to estimate prospects of detecting a large-scale anisotropy of ultra-high-energy cosmic rays from a nearby source with K-EUSO. Nearby active galactic nuclei Centaurus A, M82, NGC 253, M87 and Fornax A were considered as possible sources of UHECRs. A minimal model for extragalactic cosmic rays and neutrinos by Kachelriess, Kalashev, Ostapchenko and Semikoz (2017) was chosen for definiteness. We demonstrate that an observation of $gtrsim300$ events will allow detecting a large-scale anisotropy with a high confidence level providing the fraction of from-source events is $simeq$10-15%, depending on a particular source. The threshold fraction decreases with an increasing sample size. We also discuss if an overdensity originating from a nearby source can be observed at around the ankle in case a similar anisotropy is found beyond 57 EeV. The results are generic and hold for other future experiments with a uniform exposure of the celestial sphere.
We present an updated cosmic-ray mass composition analysis in the energy range $10^{16.8}$ to $10^{18.3}$ eV from 334 air showers measured with the LOFAR radio telescope, and selected for minimal bias. In this energy range, the origin of cosmic rays is expected to shift from galactic to extragalactic sources. The analysis is based on an improved method to infer the depth of maximum $X_{rm max}$ of extensive air showers from radio measurements and air shower simulations. We show results of the average and standard deviation of $X_{rm max}$ versus primary energy, and analyze the $X_{rm max}$-dataset at distribution level to estimate the cosmic ray mass composition. Our approach uses an unbinned maximum likelihood analysis, making use of existing parametrizations of $X_{rm max}$-distributions per element. The analysis has been repeated for three main models of hadronic interactions. Results are consistent with a significant light-mass fraction, at best fit $23$ to $39$ $%$ protons plus helium, depending on the choice of hadronic interaction model. The fraction of intermediate-mass nuclei dominates. This confirms earlier results from LOFAR, with systematic uncertainties on $X_{rm max}$ now lowered to 7 to $9$ $mathrm{g/cm^2}$. We find agreement in mass composition compared to results from Pierre Auger Observatory, within statistical and systematic uncertainties. However, in line with earlier LOFAR results, we find a slightly lower average $X_{rm max}$. The values are in tension with those found at Pierre Auger Observatory, but agree with results from other cosmic ray observatories based in the Northern hemisphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا