ترغب بنشر مسار تعليمي؟ اضغط هنا

High-index dielectric metasurfaces performing mathematical operations

158   0   0.0 ( 0 )
 نشر من قبل Concetto Eugenio Andrea Cordaro
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Image processing and edge detection are at the core of several newly emerging technologies, such as augmented reality, autonomous driving and more generally object recognition. Image processing is typically performed digitally using integrated electronic circuits and algorithms, implying fundamental size and speed limitations, as well as significant power needs. On the other hand, it can also be performed in a low-power analog fashion using Fourier optics, requiring however bulky optical components. Here, we introduce dielectric metasurfaces that perform optical image edge detection in the analog domain using a subwavelength geometry that can be readily integrated with detectors. The metasurface is composed of a suitably engineered array of nanobeams designed to perform either 1st- or 2nd-order spatial differentiation. We experimentally demonstrate the 2nd-derivative operation on an input image, showing the potential of all-optical edge detection using a silicon metasurface geometry working at a numerical aperture as large as 0.35.



قيم البحث

اقرأ أيضاً

The recent breakthrough in metamaterial-based optical computing devices [Science 343, 160 (2014)] has inspired a quest for similar systems in acoustics, performing mathematical operations on sound waves. So far, acoustic analog computing has been dem onstrated using thin planar metamaterials, carrying out the operator of choice in Fourier domain. These so-called filtering metasurfaces, however, are always accompanied with additional Fourier transform sub-blocks, enlarging the computing system and preventing its applicability in miniaturized architectures. Here, employing a simple high-index acoustic slab waveguide, we demonstrate a highly compact and potentially integrable acoustic computing system. The system directly performs mathematical operation in spatial domain and is therefore free of any Fourier bulk lens. Such compact computing system is highly promising for various applications including high throughput image processing, ultrafast equation solving, and real time signal processing.
We demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances ($Q=270pm30$) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
Electromagnetic fields coupled with mechanical degrees of freedom have recently shown exceptional and innovative applications, ultimately leading to mesoscopic optomechanical devices operating in the quantum regime of motion. Simultaneously, micromec hanical elements have provided new ways to enhance and manipulate the optical properties of passive photonic elements. Following this concept, in this article we show how combining a chiral metasurface with a GaAs suspended micromembrane can offer new scenarios for controlling the polarization state of near-infrared light beams. Starting from the uncommon properties of chiral metasurface to statically realize target polarization states and circular and linear dichroism, we report mechanically induced, ~300 kHz polarization modulation, which favorably compares, in terms of speed, with liquid-crystals commercial devices. Moreover, we demonstrate how the mechanical resonance can be non-trivially affected by the input light polarization (and chiral state) via a thermoelastic effect triggered by intracavity photons. This work inaugurates the field of Polarization Optomechanics, which could pave the way to fast polarimetric devices, polarization modulators and dynamically tunable chiral state generators and detectors, as well as giving access to new form of polarization nonlinearities and control.
Besides purely academic interest, giant field enhancement within subwavelength particles at light scattering of a plane electromagnetic wave is important for numerous applications ranging from telecommunications to medicine and biology. In this paper , we experimentally demonstrate the enhancement of the intensity of the magnetic field in a high-index dielectric cylinder at the proximity of the dipolar Mie resonances by more than two orders of magnitude for both the TE and TM polarizations of the incident wave. We present a complete theoretical explanation of the effect and show that the phenomenon is very general - it should be observed for any high-index particles. The results explain the huge enhancement of nonlinear effects observed recently in optics, suggesting a new landscape for all-dielectric nonlinear nanoscale photonics.
The improvement of light-emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. While emission rate enhancement is certainly one of the targets, in this regard, for LED integration to complex photonic devices, one would require to have, additionally, precise control of the wavefront of the emitted light. Metasurfaces are spatial arrangements of engineered scatters that may enable this light manipulation capability with unprecedented resolution. Most of these devices, however, are only able to function properly under irradiation of light with a large spatial coherence, typically normally incident lasers. LEDs, on the other hand, have angularly broad, Lambertian-like emission patterns characterized by a low spatial coherence, which makes the integration of metasurface devices on LED architectures extremely challenging. A novel concept for metasurface integration on LED is proposed, using a cavity to increase the LED spatial coherence through an angular collimation. Due to the resonant character of the cavity, extending the spatial coherence of the emitted light does not come at the price of any reduction in the total emitted power. The experimental demonstration of the proposed concept is implemented on a GaP LED architecture including a hybrid metallic-Bragg cavity. By integrating a silicon metasurface on top we demonstrate two different functionalities of these compact devices: directional LED emission at a desired angle and LED emission of a vortex beam with an orbital angular momentum. The presented concept is general, being applicable to other incoherent light sources and enabling metasurfaces designed for plane waves to work with incoherent light emitters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا