ﻻ يوجد ملخص باللغة العربية
Using the Gaia data release 2 (DR2), we analyzed the distribution of stars in the close vicinity of the Sun in the full 3D position-velocity space. We have found no evidence of incomplete phase mixing in the vertical direction of the disk, which could be originated by some external events. We show that the vertical phase space spiral $Z$-$V_z$ is produced by the well-known moving groups (MGs), mainly by Coma-Berenices, Pleiades-Hyades and Sirius, when the statistical characteristics (mean, median, or mode) of the azimuthal velocity $V_varphi$ are used to analyze the distribution in the vertical position-velocity plane. This result does not invoke external perturbations and is independent on the internal dynamical mechanisms that originate the MGs. Our conclusions counterbalance current arguments in favor of short-lived (between 300 and 900 Myr) structures in the solar neighborhood. Contrarily, they support the hypothesis of a longer formation time scale (around a few Gyr) for the MGs.
A simple model is presented of the formation of the spiral the (z,v_z) phase plane of solar-neighbourhood stars that was recently discovered in Gaia data. The key is that the frequency Omega_z at which stars oscillate vertically depends on angular mo
The present paper is the culminating one of a series aimed to contribute to the understanding of the kinematic structures of the solar neighbourhood (SN), explaining the origin of the Local Arm and relating the moving groups with the spiral-arms reso
Context. Recent studies have suggested that moving groups have a dynamic or resonant origin. Under this hypothesis, these kinematic structures become a powerful tool for studying the large-scale structure and dynamics of the Milky Way. Aims. We aim t
Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there
We present the results of a study of the stellar activity in the solar neighborhood using complete kinematics (galactocentric velocities U,V,W) and the chromospheric activity index $log R_{rm{HK}}$. We analyzed the average activity level near the cen