ﻻ يوجد ملخص باللغة العربية
We present a scheme of interaction-induced topological bandstructures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under non-resonant pumping, we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under resonant coherent pumping, we find that it is also possible to engineer a topological dispersion that is linear in wavevector -- a property associated with polariton superfluidity.
We present a scheme to obtain anti-chiral edge states in an exciton-polariton honeycomb lattice with strip geometry, where the modes corresponding to both edges propagate in the same direction. Under resonant pumping the effect of a polariton condens
The formation of nonlinear Bloch states in open driven-dissipative system of exciton-polaritons loaded into a weak-contrast 1D periodic lattice is studied numerically and analytically. The condensate is described within the framework of mean-field th
Recently realized higher order topological insulators have taken a surge of interest among the theoretical and experimental condensed matter community. The two-dimensional second order topological insulators give rise to zero-dimensional localized co
We theoretically explore nonresonantly pumped polaritonic graphene, a system consisting of a honeycomb lattice of micropillars in the regime of strong light-matter coupling. We demonstrate that, depending on the parameters of the structure, such as i
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the e