ﻻ يوجد ملخص باللغة العربية
In the current study, a quantum-cascade-laser-based dual-comb spectrometer (DCS) was used to paint a detailed picture of a 1.0 ms high-temperature reaction between propyne and oxygen. The DCS interfaced with a shock tube to provide pre-ignition conditions of 1225 K, 2.8 atm, and 2% p-C3H4/18% O2/Ar. The spectrometer consisted of two free-running, non-stabilized frequency combs each emitting at 179 wavelengths between 1174 and 1233 cm-1. A free spectral range, f_r, of 9.86 GHz and a difference in comb spacing, {Delta}f_r, of 5 MHz, enabled a theoretical time resolution of 0.2 us but the data was time-integrated to 4 us to improve SNR. The accuracy of the spectrometer was monitored using a suite of independent laser diagnostics and good agreement observed.
Dual-comb spectroscopy is a rapidly developing technique that enables moving parts-free, simultaneously broadband and high-resolution measurements with microseconds of acquisition time. However, for high sensitivity measurements and extended duration
We demonstrate fiber mode-locked dual frequency comb spectroscopy for broadband, high resolution measurements in a rapid compression machine (RCM). We apply an apodization technique to improve the short-term signal-to-noise-ratio (SNR), which enables
We present a chip-scale scanning dual-comb spectroscopy (SDCS) approach for broadband ultrahigh-resolution spectral acquisition. SDCS uses Si3N4 microring resonators that generate two single soliton micro-combs spanning 37 THz (300 nm) on the same ch
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale.
Dissipative Kerr-microresonator soliton combs (hereafter called soliton combs) are promising to realize chip scale integration of full soliton comb systems providing high precision, broad spectral coverage and a coherent link to the micro/mm/THz doma