ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized $p+p$, $p+$Al, and $p+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV

118   0   0.0 ( 0 )
 نشر من قبل Brant M. Johnson
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{uparrow}+p$, $p^{uparrow}+$Al and $p^{uparrow}+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. The measurements have been performed at forward rapidity ($1.4<eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in polpp collisions, and a significantly reduced asymmetry in $p^{uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.



قيم البحث

اقرأ أيضاً

111 - C. Aidala , Y. Akiba , M. Alfred 2019
The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.
58 - C. Aidala , Y. Akiba , M. Alfred 2017
During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized $p$$+$$p$ collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in $p$$+$$p$ collisions predicts only a moderate atomic-mass-number ($A$) dependence. In contrast, the asymmetries observed at RHIC in $p$$+$$A$ collisions showed a surprisingly strong $A$ dependence in inclusive forward neutron production. The observed asymmetry in $p$$+$Al collisions is much smaller, while the asymmetry in $p$$+$Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed $A$ dependence.
108 - C. Aidala , Y. Akiba , M. Alfred 2018
We report the transverse single-spin asymmetries of $J/psi$ production at forward and backward rapidity, $1.2<|y|<2.2$, as a function of $J/psi$ transverse momentum ($p_T$) and Feynman-$x$ ($x_F$). The data analyzed were recorded by the PHENIX experi ment at the Relativistic Heavy Ion Collider in 2015 from $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions with transversely polarized proton beams at $sqrt{s_{_{NN}}}=200$ GeV. At this collision energy, single-spin asymmetries for heavy-flavor particle production of $p$$+$$p$ collisions provide access to the spin-dependent gluon distribution and higher-twist correlation functions inside the nucleon, such as the gluon Qiu-Sterman and trigluon correlation functions. Proton+nucleus collisions offer an excellent opportunity to study nuclear effects on the correlation functions. The data indicate negative asymmetries at the two-standard-deviation level in the $p$$+$Au data for $p_T<2$ GeV/$c$ at both forward and backward rapidity, while in $p$$+$$p$ and $p$$+$Al collisions the asymmetries are consistent with zero within the range of experimental uncertainties.
Measurements of transverse-single-spin asymmetries ($A_{N}$) in $p$$+$$p$ collisions at $sqrt{s}=$62.4 and 200 GeV with the PHENIX detector at RHIC are presented. At midrapidity, $A_{N}$ is measured for neutral pion and eta mesons reconstructed from diphoton decay, and at forward rapidities, neutral pions are measured using both diphotons and electromagnetic clusters. The neutral-pion measurement of $A_{N}$ at midrapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, where the valence quark distributions are probed, the data exhibit sizable asymmetries. In comparison with previous measurements in this kinematic region, the new data extend the kinematic coverage in $sqrt{s}$ and $p_T$, and it is found that the asymmetries depend only weakly on $sqrt{s}$. The origin of the forward $A_{N}$ is presently not understood quantitatively. The extended reach to higher $p_T$ probes the transition between transverse momentum dependent effects at low $p_T$ and multi-parton dynamics at high $p_T$.
We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $eta$ mesons at large pseudorapidity from $sqrt{s}=200$~GeV $p^{uparrow}+p$ collisions. The measured cross section for $0.5<p_T<5.0$~GeV/$c$ and $3.0<|eta| <3.8$ is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries $A_N$ have been measured as a function of Feynman-$x$ ($x_F$) from $0.2<|x_{F}|<0.7$, as well as transverse momentum ($p_T$) from $1.0<p_T<4.5$~GeV/$c$. The asymmetry averaged over positive $x_F$ is $langle{A_{N}}rangle=0.061{pm}0.014$. The results are consistent with prior transverse single-spin measurements of forward $eta$ and $pi^{0}$ mesons at various energies in overlapping $x_F$ ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in $p^{uparrow}+p$ collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا