ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized $p$$+$$A$ collisions at $sqrt{s_{_{NN}}}=200$ GeV

59   0   0.0 ( 0 )
 نشر من قبل Brant M. Johnson
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized $p$$+$$p$ collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in $p$$+$$p$ collisions predicts only a moderate atomic-mass-number ($A$) dependence. In contrast, the asymmetries observed at RHIC in $p$$+$$A$ collisions showed a surprisingly strong $A$ dependence in inclusive forward neutron production. The observed asymmetry in $p$$+$Al collisions is much smaller, while the asymmetry in $p$$+$Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed $A$ dependence.



قيم البحث

اقرأ أيضاً

117 - C. Aidala , Y. Akiba , M. Alfred 2019
We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{uparrow}+p$, $p^{uparrow}+$Al and $p^{uparrow}+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. The measure ments have been performed at forward rapidity ($1.4<eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in polpp collisions, and a significantly reduced asymmetry in $p^{uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.
99 - M.H. Kim , O. Adriani , E. Berti 2020
Transverse single-spin asymmetries of very forward neutral pions generated in polarized $p + p$ collisions allow us to understand the production mechanism in terms of perturbative and non-perturbative strong interactions. During 2017 the RHICf Collab oration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized $p$+$p$ collisions at $sqrt{s}$ = 510 GeV. The large non-zero asymmetries increasing both in longitudinal momentum fraction $x_{F}$ and transverse momentum $p_{T}$ have been observed at low transverse momentum $p_{T} < 1$ GeV/$c$ for the first time at this collision energy. The asymmetries show an approximate $x_{F}$ scaling in the $p_{T}$ region where non-perturbative processes are expected to dominate. A non-negligible contribution from soft processes may be necessary to explain the nonzero neutral pion asymmetries.
108 - C. Aidala , Y. Akiba , M. Alfred 2018
We report the transverse single-spin asymmetries of $J/psi$ production at forward and backward rapidity, $1.2<|y|<2.2$, as a function of $J/psi$ transverse momentum ($p_T$) and Feynman-$x$ ($x_F$). The data analyzed were recorded by the PHENIX experi ment at the Relativistic Heavy Ion Collider in 2015 from $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions with transversely polarized proton beams at $sqrt{s_{_{NN}}}=200$ GeV. At this collision energy, single-spin asymmetries for heavy-flavor particle production of $p$$+$$p$ collisions provide access to the spin-dependent gluon distribution and higher-twist correlation functions inside the nucleon, such as the gluon Qiu-Sterman and trigluon correlation functions. Proton+nucleus collisions offer an excellent opportunity to study nuclear effects on the correlation functions. The data indicate negative asymmetries at the two-standard-deviation level in the $p$$+$Au data for $p_T<2$ GeV/$c$ at both forward and backward rapidity, while in $p$$+$$p$ and $p$$+$Al collisions the asymmetries are consistent with zero within the range of experimental uncertainties.
The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.
79 - M. H. Kim , B. Hong , Y. Goto 2019
Transverse single spin asymmetry, $A_{N}$, of very forward $pi^{0}$ production from polarized $p + p$ collisions provides new information toward an understanding of its production mechanism. $A_{N}$ of forward $pi^{0}$ in the pseudorapidity region of $3 < eta < 4$ has been described by the partonic structure of the proton in the perturbative QCD framework. However, recent data indicates a potential contribution from not only partonic but also diffractive interactions. In order to provide a new insight on the origin of the $A_{N}$, we measured the very forward $pi^{0}$ production in the pseudorapidity region of $6 < eta$ from $sqrt{s}$ = 510 GeV polarized $p + p$ collisions at RHIC in 2017. We report our measurement of the very forward $pi^{0}$ over the transverse momentum range of $0 < p_{T} < 1$ GeV/$c$ and the preliminary result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا