ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting the rates of future aftershocks of all generations is essential to develop better earthquake forecast models

65   0   0.0 ( 0 )
 نشر من قبل Shyam Nandan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Currently, one of the best performing and most popular earthquake forecasting models rely on the working hypothesis that: locations of past background earthquakes reveal the probable location of future seismicity. As an alternative, we present a class of smoothed seismicity models (SSMs) based on the principles of the Epidemic Type Aftershock Sequence (ETAS) model, which forecast the location, time and magnitude of all future earthquakes using the estimates of the background seismicity rate and the rates of future aftershocks of all generations. Using the Californian earthquake catalog, we formulate six controlled pseudo-prospective experiments with different combination of three target magnitude thresholds: 2.95, 3.95 or 4.95 and two forecasting time horizons: 1 or 5 year. In these experiments, we compare the performance of:(1) ETAS model with spatially homogenous parameters or GETAS (2) ETAS model with spatially variable parameters or SVETAS (3) three declustering based SSMs (4) a simple SSM based on undeclustered data and (5) a model based on strain rate data, in forecasting the location and magnitude of all (undeclustered) target earthquakes during many testing periods. In all conducted experiments, the SVETAS model comes out with consistent superiority compared to all the competing models. Consistently better performance of SVETAS model with respect to declustering based SSMs highlights the importance of forecasting the future aftershocks of all generations for developing better earthquake forecasting models. Among the two ETAS models themselves, accounting for the optimal spatial variation of the parameters leads to strong and statistically significant improvements in forecasting performance.

قيم البحث

اقرأ أيضاً

Forecasting the full distribution of the number of earthquakes is revealed to be inherently superior to forecasting their mean. Forecasting the full distribution of earthquake numbers is also shown to yield robust projections in the presence of surpr ise large earthquakes, which in the past have strongly deteriorated the scores of existing models. We show this with pseudo-prospective experiments on synthetic as well as real data from the Advanced National Seismic System (ANSS) database for California, with earthquakes with magnitude larger than 2.95 that occurred between the period 1971-2016. Our results call in question the testing methodology of the Collaboratory for the study of earthquake predictability (CSEP), which amounts to assuming a Poisson distribution of earthquake numbers, which is known to be a poor representation of the heavy-tailed distribution of earthquake numbers. Using a spatially varying ETAS model, we demonstrate a remarkable stability of the forecasting performance, when using the full distribution of earthquake numbers for the forecasts, even in the presence of large earthquakes such as Mw 7.1 Hector Mine, Mw 7.2 El Mayor-Cucapah, Mw 6.6 Sam Simeon earthquakes, or in the presence of intense swarm activity in Northwest Nevada in 2014. While our results have been derived for ETAS type models, we propose that all earthquake forecasting models of any type should embrace the full distribution of earthquake numbers, such that their true forecasting potential is revealed.
We propose two new methods to calibrate the parameters of the Epidemic-Type Aftershock Sequence (ETAS) model based on expectation maximization (EM) while accounting for temporal variation of catalog completeness. The first method allows for model cal ibration on earthquake catalogs with long history, featuring temporal variation of the magnitude of completeness, $m_c$. This extended calibration technique is beneficial for long-term Probabilistic Seismic Hazard Assessment (PSHA), which is often based on a mixture of instrumental and historical catalogs. The second method jointly estimates ETAS parameters and high-frequency detection incompleteness to address the potential biases in parameter calibration due to short-term aftershock incompleteness. For this, we generalize the concept of completeness magnitude and consider a rate- and magnitude-dependent detection probability $-$ embracing incompleteness instead of avoiding it. Using synthetic tests, we show that both methods can accurately invert the parameters of simulated catalogs. We then use them to estimate ETAS parameters for California using the earthquake catalog since 1932. To explore how the newly gained information from the second method affects earthquakes predictability, we conduct pseudo-prospective forecasting experiments for California. Our proposed model significantly outperforms the base ETAS model, and we find that the ability to include small earthquakes for simulation of future scenarios is the main driver of the improvement. Our results point towards a preference of earthquakes to trigger similarly sized aftershocks, which has potentially major implications for our understanding of earthquake interaction mechanisms and for the future of seismicity forecasting.
Natural earthquake fault systems are highly non-homogeneous. The inhomogeneities occur be- cause the earth is made of a variety of materials which hold and dissipate stress differently. In this work, we study scaling in earthquake fault models which are variations of the Olami-Feder- Christensen (OFC) and Rundle-Jackson-Brown (RJB) models. We use the scaling to explore the effect of spatial inhomogeneities due to damage and inhomogeneous stress dissipation in the earthquake-fault-like systems when the stress transfer range is long, but not necessarily longer than the length scale associated with the inhomogeneities of the system. We find that the scaling depends not only on the amount of damage, but also on the spatial distribution of that damage.
87 - O.M. Braun , E. Tosatti 2016
Inspired by spring-block models, we elaborate a minimal physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our new point is to demonstrate that the simultaneou s incorporation of ageing of contacts in the sliding interface and of elasticity of the sliding plates constitute the minimal ingredients to account for both laws within the same frictional model.
237 - A. Saichev 2005
Using the ETAS branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all g enerations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Baths law. Our theory shows that Baths law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars +- 0.1 for Baths constant value around 1.2, our exact analytical treatment of Baths law provides new constraints on the productivity exponent alpha and the branching ratio n: $0.9 <= alpha <= 1$ and 0.8 <= n <= 1. We propose a novel method for measuring alpha based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the ``second Baths law for foreshocks: the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا