ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution of the Largest Aftershocks in Branching Models of Triggered Seismicity: Theory of the Universal Baths law

238   0   0.0 ( 0 )
 نشر من قبل Sornette
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Saichev




اسأل ChatGPT حول البحث

Using the ETAS branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Baths law. Our theory shows that Baths law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars +- 0.1 for Baths constant value around 1.2, our exact analytical treatment of Baths law provides new constraints on the productivity exponent alpha and the branching ratio n: $0.9 <= alpha <= 1$ and 0.8 <= n <= 1. We propose a novel method for measuring alpha based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the ``second Baths law for foreshocks: the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude.



قيم البحث

اقرأ أيضاً

Several recent works point out that the crowd of small unobservable earthquakes (with magnitudes below the detection threshold $m_d$) may play a significant and perhaps dominant role in triggering future seismicity. Using the ETAS branching model of triggered seismicity, we apply the formalism of generating probability functions to investigate how the statistical properties of observable earthquakes differ from the statistics of all events. The ETAS (epidemic-type aftershock sequence) model assumes that each earthquake can trigger other earthquakes (``aftershocks). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. The triggering efficiency of earthquakes is assumed to vanish below a lower magnitude limit $m_0$, in order to ensure the convergence of the theory and may reflect the physics of state-and-velocity frictional rupture. We show that, to a good approximation, the ETAS model is renormalized onto itself under what amounts to a decimation procedure $m_0 to m_d$, with just a renormalization of the branching ratio from $n$ to an effective value $n(m_d)$. Our present analysis thus confirms, for the full statistical properties, the results obtained previously by one of us and Werner, based solely on the average seismic rates (the first-order moment of the statistics). However, our analysis also demonstrates that this renormalization is not exact, as there are small corrections which can be systematically calculated, in terms of additional contributions that can be mapped onto a different branching model (a new relevant direction in the language of the renormalization group).
231 - A. Saichev 2004
We report an empirical determination of the probability density functions $P_{text{data}}(r)$ of the number $r$ of earthquakes in finite space-time windows for the California catalog. We find a stable power law tail $P_{text{data}}(r) sim 1/r^{1+mu}$ with exponent $mu approx 1.6$ for all space ($5 times 5$ to $20 times 20$ km$^2$) and time intervals (0.1 to 1000 days). These observations, as well as the non-universal dependence on space-time windows for all different space-time windows simultaneously, are explained by solving one of the most used reference model in seismology (ETAS), which assumes that each earthquake can trigger other earthquakes. The data imposes that active seismic regions are Cauchy-like fractals, whose exponent $delta =0.1 pm 0.1$ is well-constrained by the seismic rate data.
87 - A. Saichev 2004
We report an empirical determination of the probability density functions P(r) of the number r of earthquakes in finite space-time windows for the California catalog, over fixed spatial boxes 5 x 5 km^2 and time intervals dt =1, 10, 100 and 1000 days . We find a stable power law tail P(r) ~ 1/r^{1+mu} with exponent mu approx 1.6 for all time intervals. These observations are explained by a simple stochastic branching process previously studied by many authors, the ETAS (epidemic-type aftershock sequence) model which assumes that each earthquake can trigger other earthquakes (``aftershocks). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. We develop the full theory in terms of generating functions for describing the space-time organization of earthquake sequences and develop several approximations to solve the equations. The calibration of the theory to the empirical observations shows that it is essential to augment the ETAS model by taking account of the pre-existing frozen heterogeneity of spontaneous earthquake sources. This seems natural in view of the complex multi-scale nature of fault networks, on which earthquakes nucleate. Our extended theory is able to account for the empirical observation satisfactorily. In particular, the adjustable parameters are determined by fitting the largest time window $dt=1000$ days and are then used as frozen in the formulas for other time scales, with very good agreement with the empirical data.
We analyze the transformation properties of Faraday law in an empty space and its relationship with Maxwell equations. In our analysis we express the Faraday law via the four-potential of electromagnetic field and the field of four-velocity, defined on a circuit under its deforming motion. The obtained equations show one more facet of the physical meaning of electromagnetic potentials, where the motional and transformer parts of the flux rule are incorporated into a common phenomenon, reflecting the dependence of four-potential on spatial and time coordinates, correspondingly. It has been explicitly shown that for filamentary closed deforming circuit the flux rule is Lorentz-invariant. At the same time, analyzing a transformation of e.m.f., we revealed a controversy: due to causal requirements, the e.m.f. should be the value of fixed sign, whereas the Lorentz invariance of flux rule admits the cases, where the e.m.f. might change its sign for different inertial observers. Possible resolutions of this controversy are discussed.
The driving concept behind one of the most successful statistical forecasting models, the ETAS model, has been that the seismicity is driven by spontaneously occurring background earthquakes that cascade into multitudes of triggered earthquakes. In n early all generalizations of the ETAS model, the magnitudes of the background and the triggered earthquakes are assumed to follow Gutenberg-Richter law with the same exponent (b{eta}-value). Furthermore, the magnitudes of the triggered earthquakes are always assumed to be independent of the magnitude of the triggering earthquake. Using an EM algorithm applied to the Californian earthquake catalogue, we show that the distribution of earthquake magnitudes exhibits three distinct b{eta}-values: b{eta}_b for background events; b{eta}_a-{delta} and b{eta}_a+{delta}, respectively, for triggered events below and above the magnitude of the triggering earthquake; the two last values express a correlation between the magnitudes of triggered events with that of the triggering earthquake, a feature so far absent in all proposed operational generalizations of the ETAS model. The ETAS model incorporating this kinked magnitude distribution provides by far the best description of seismic catalogs and could thus have the best forecasting potential. We speculate that the kinked magnitude distribution may result from the system tending to restore the symmetry of the regional displacement gradient tensor that has been broken by the initiating event. The general emerging concept could be that while the background events occur primarily to accommodate the symmetric stress tensor at the boundaries of the system, the triggered earthquakes are quasi-Goldstone fluctuations of a self-organized critical deformation state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا