ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking Uplink Hybrid Processing: When is Pure Analog Processing Suggested?

54   0   0.0 ( 0 )
 نشر من قبل Jingbo Du
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this correspondence, we analytically characterize the benefit of digital processing in uplink massive multiple-input multiple-output (MIMO) with sub-connected hybrid architecture. By assuming that the number of radio frequency (RF) chains is equal to that of users, we characterize achievable rates of both pure analog detection and hybrid detection under the i.i.d. Rayleigh fading channel model. From the derived expressions, we discover that the analog processing can outperform the hybrid processing using the maximal ratio combining (MRC) or zero-forcing (ZF) criterion in cases under some engineering assumptions. Performance comparison of the schemes are presented under tests with various numbers of users and numbers of antennas at the base station.

قيم البحث

اقرأ أيضاً

Analog signal processing (ASP) is presented as a systematic approach to address future challenges in high speed and high frequency microwave applications. The general concept of ASP is explained with the help of examples emphasizing basic ASP effects , such as time spreading and compression, chirping and frequency discrimination. Phasers, which represent the core of ASP systems, are explained to be elements exhibiting a frequency-dependent group delay response, and hence a nonlinear phase response versus frequency, and various phaser technologies are discussed and compared. Real-time Fourier transformation (RTFT) is derived as one of the most fundamental ASP operations. Upon this basis, the specifications of a phaser resolution, absolute bandwidth and magnitude balance are established, and techniques are proposed to enhance phasers for higher ASP performance. Novel closed-form synthesis techniques, applicable to all-pass transmission-type cascaded Csection phasers, all-pass reflection-type coupled resonator phasers and band-pass cross-coupled resonator phasers are described. Several applications using these phasers are presented, including a tunable pulse delay system, a spectrum sniffer and a realtime spectrum analyzer (RTSA). Finally, future challenges and opportunities are discussed.
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two. Analog compression that narrows down the input bandwidth prior to sampling with commerc ial devices. A nonlinear algorithm then detects the input subspace prior to conventional signal processing. A representative union model of spectrally-sparse signals serves as a test-case to study these Xampling functions. We adopt three metrics for the choice of analog compression: robustness to model mismatch, required hardware accuracy and software complexities. We conduct a comprehensive comparison between two sub-Nyquist acquisition strategies for spectrally-sparse signals, the random demodulator and the modulated wideband converter (MWC), in terms of these metrics and draw operative conclusions regarding the choice of analog compression. We then address lowrate signal processing and develop an algorithm for that purpose that enables convenient signal processing at sub-Nyquist rates from samples obtained by the MWC. We conclude by showing that a variety of other sampling approaches for different union classes fit nicely into our framework.
In this letter the performance of multiple relay channels is analyzed for the situation in which multiple antennas are deployed only at the relays. The simple repetition-coded decodeand- forward protocol with two different antenna processing techniqu es at the relays is investigated. The antenna combining techniques are maximum ratio combining (MRC) for reception and transmit beamforming (TB) for transmission. It is shown that these distributed antenna combining techniques can exploit the full spatial diversity of the relay channels regardless of the number of relays and antennas at each relay, and offer significant power gain over distributed space-time coding techniques.
87 - Francesco Buscemi 2018
This paper considers the comparison of noisy channels from the viewpoint of statistical decision theory. Various orderings are discussed, all formalizing the idea that one channel is better than another for information transmission. The main result i s an equivalence relation that is proved for classical channels, quantum channels with classical encoding, and quantum channels with quantum encoding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا