ترغب بنشر مسار تعليمي؟ اضغط هنا

Analog Signal Processing

161   0   0.0 ( 0 )
 نشر من قبل Christophe Caloz Christophe Caloz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analog signal processing (ASP) is presented as a systematic approach to address future challenges in high speed and high frequency microwave applications. The general concept of ASP is explained with the help of examples emphasizing basic ASP effects, such as time spreading and compression, chirping and frequency discrimination. Phasers, which represent the core of ASP systems, are explained to be elements exhibiting a frequency-dependent group delay response, and hence a nonlinear phase response versus frequency, and various phaser technologies are discussed and compared. Real-time Fourier transformation (RTFT) is derived as one of the most fundamental ASP operations. Upon this basis, the specifications of a phaser resolution, absolute bandwidth and magnitude balance are established, and techniques are proposed to enhance phasers for higher ASP performance. Novel closed-form synthesis techniques, applicable to all-pass transmission-type cascaded Csection phasers, all-pass reflection-type coupled resonator phasers and band-pass cross-coupled resonator phasers are described. Several applications using these phasers are presented, including a tunable pulse delay system, a spectrum sniffer and a realtime spectrum analyzer (RTSA). Finally, future challenges and opportunities are discussed.

قيم البحث

اقرأ أيضاً

53 - Jingbo Du , Wei Xu , Bin Sheng 2019
In this correspondence, we analytically characterize the benefit of digital processing in uplink massive multiple-input multiple-output (MIMO) with sub-connected hybrid architecture. By assuming that the number of radio frequency (RF) chains is equal to that of users, we characterize achievable rates of both pure analog detection and hybrid detection under the i.i.d. Rayleigh fading channel model. From the derived expressions, we discover that the analog processing can outperform the hybrid processing using the maximal ratio combining (MRC) or zero-forcing (ZF) criterion in cases under some engineering assumptions. Performance comparison of the schemes are presented under tests with various numbers of users and numbers of antennas at the base station.
Most generative models of audio directly generate samples in one of two domains: time or frequency. While sufficient to express any signal, these representations are inefficient, as they do not utilize existing knowledge of how sound is generated and perceived. A third approach (vocoders/synthesizers) successfully incorporates strong domain knowledge of signal processing and perception, but has been less actively researched due to limited expressivity and difficulty integrating with modern auto-differentiation-based machine learning methods. In this paper, we introduce the Differentiable Digital Signal Processing (DDSP) library, which enables direct integration of classic signal processing elements with deep learning methods. Focusing on audio synthesis, we achieve high-fidelity generation without the need for large autoregressive models or adversarial losses, demonstrating that DDSP enables utilizing strong inductive biases without losing the expressive power of neural networks. Further, we show that combining interpretable modules permits manipulation of each separate model component, with applications such as independent control of pitch and loudness, realistic extrapolation to pitches not seen during training, blind dereverberation of room acoustics, transfer of extracted room acoustics to new environments, and transformation of timbre between disparate sources. In short, DDSP enables an interpretable and modular approach to generative modeling, without sacrificing the benefits of deep learning. The library is publicly available at https://github.com/magenta/ddsp and we welcome further contributions from the community and domain experts.
Resume: Le principal objet de cette communication est de faire une retro perspective succincte de lutilisation de lentropie et du principe du maximum dentropie dans le domaine du traitement du signal. Apr`es un bref rappel de quelques definitions et du principe du maximum dentropie, nous verrons successivement comment lentropie est utilisee en separation de sources, en modelisation de signaux, en analyse spectrale et pour la resolution des probl`emes inverses lineaires. Mots cles : Entropie, Entropie croisee, Distance de Kullback, Information mutuelle, Estimation spectrale, Probl`emes inverses Abstract: The main object of this work is to give a brief overview of the different ways the entropy has been used in signal and image processing. After a short introduction of different quantities related to the entropy and the maximum entropy principle, we will study their use in different fields of signal processing such as: source separation, model order selection, spectral estimation and, finally, general linear inverse problems. Keywords : Entropy, Relative entropy, Kullback distance, Mutual information, Spectral estimation, Inverse problems.
81 - Hendrik Purwins 2019
Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in or der to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.
We prove the correspondence between the information geometry of a signal filter and a Kahler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a Kahler manifold. The square of the complex cepst rum norm of the signal filter corresponds to the Kahler potential. The Hermitian structure of the Kahler manifold is explicitly emergent if and only if the impulse response function of the highest degree in $z$ is constant in model parameters. The Kahlerian information geometry takes advantage of more efficient calculation steps for the metric tensor and the Ricci tensor. Moreover, $alpha$-generalization on the geometric tensors is linear in $alpha$. It is also robust to find Bayesian predictive priors, such as superharmonic priors, because Laplace-Beltrami operators on Kahler manifolds are in much simpler forms than those of the non-Kahler manifolds. Several time series models are studied in the Kahlerian information geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا