ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven Identification and Prediction of Power System Dynamics Using Linear Operators

128   0   0.0 ( 0 )
 نشر من قبل Pranav Sharma
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose linear operator theoretic framework involving Koopman operator for the data-driven identification of power system dynamics. We explicitly account for noise in the time series measurement data and propose robust approach for data-driven approximation of Koopman operator for the identification of nonlinear power system dynamics. The identified model is used for the prediction of state trajectories in the power system. The application of the framework is illustrated using an IEEE nine bus test system.

قيم البحث

اقرأ أيضاً

In this paper, we develop a system identification algorithm to identify a model for unknown linear quantum systems driven by time-varying coherent states, based on empirical single-shot continuous homodyne measurement data of the systems output. The proposed algorithm identifies a model that satisfies the physical realizability conditions for linear quantum systems, challenging constraints not encountered in classical (non-quantum) linear system identification. Numerical examples on a multiple-input multiple-output optical cavity model are presented to illustrate an application of the identification algorithm.
Building occupant behavior drives significant differences in building energy use, even in automated buildings. Users distrust in the automation causes them to override settings. This results in responses that fail to satisfy both the occupants and/or the building automations objectives. The transition toward grid-interactive efficient buildings will make this evermore important as complex building control systems optimize not only for comfort, but also changing electricity costs. This paper presents a data-driven approach to study thermal comfort behavior dynamics which are not captured by standard steady-state comfort models such as predicted mean vote. The proposed model captures the time it takes for a user to override a thermostat setpoint change as a function of the manual setpoint change magnitude. The model was trained with the ecobee Donate Your Data dataset of 5 min. resolution data from 27,764 smart thermostats and occupancy sensors. The resulting population-level model shows that, on average, a 2{deg}F override will occur after ~30 mins. and an 8{deg}F override will occur in only ~15 mins., indicating the magnitude of discomfort as a key driver to the swiftness of an override. Such models could improve demand response programs through personalized controls.
Accurate online classification of disturbance events in a transmission network is an important part of wide-area monitoring. Although many conventional machine learning techniques are very successful in classifying events, they rely on extracting inf ormation from PMU data at control centers and processing them through CPU/GPUs, which are highly inefficient in terms of energy consumption. To solve this challenge without compromising accuracy, this paper presents a novel methodology based on event-driven neuromorphic computing architecture for classification of power system disturbances. A Spiking Neural Network (SNN)-based computing framework is proposed, which exploits sparsity in disturbances and promotes local event driven operation for unsupervised learning and inference from incoming data. Spatio-temporal information of PMU signals is first extracted and encoded into spike trains and classification is achieved with SNN-based supervised and unsupervised learning framework. Moreover, a QR decomposition-based selection technique is proposed to identify signals participating in the low rank subspace of multiple disturbance events. Performance of the proposed method is validated on data collected from a 16-machine, 5-area New England-New York system.
Non-stationary forced oscillations (FOs) have been observed in power system operations. However, most detection methods assume that the frequency of FOs is stationary. In this paper, we present a methodology for the analysis of non-stationary FOs. Fi rstly, Fourier synchrosqueezing transform (FSST) is used to provide a concentrated time-frequency representation of the signals that allows identification and retrieval of non-stationary signal components. To continue, the Dissipating Energy Flow (DEF) method is applied to the extracted components to locate the source of forced oscillations. The methodology is tested using simulated as well as real PMU data. The results show that the proposed FSST-based signal decomposition provides a systematic framework for the application of DEF Method to non-stationary FOs.
The study of multiplicative noise models has a long history in control theory but is re-emerging in the context of complex networked systems and systems with learning-based control. We consider linear system identification with multiplicative noise f rom multiple state-input trajectory data. We propose exploratory input signals along with a least-squares algorithm to simultaneously estimate nominal system parameters and multiplicative noise covariance matrices. Identifiability of the covariance structure and asymptotic consistency of the least-squares estimator are demonstrated by analyzing first and second moment dynamics of the system. The results are illustrated by numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا