ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the existence of optical linear polarization in young brown dwarfs

73   0   0.0 ( 0 )
 نشر من قبل Elena Manjavacas
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases withthe degree of oblateness, which is inversely proportional to the surface gravity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R-band using CAFOS at the 2.2 m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3$sigma$, our data indicate that all targets have a linear polarimetry degree in average below 0.69% in the I-band, and below 1.0% in the R-band, at the time they were observed. We detected significant (i.e. P/$sigma$ $le$ 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R-band, with a degree of $mathrm{p^{*}}$ = 0.81 $pm$ 0.17 %.



قيم البحث

اقرأ أيضاً

In order to understand the atmospheres as well as the formation mechanism of giant planets formed outside our solar system, the next decade will require an investment in studies of isolated young brown dwarfs. In this white paper we summarize the opp ortunity for discovery space in the coming decade of isolated brown dwarfs with planetary masses in young stellar associations within 150 pc. We suggest that next generation telescopes and beyond need to invest in characterizing young brown dwarfs in order to fully understand the atmospheres of sibling directly imaged exoplanets as well as the tail end of the star formation process.
82 - E. Sanchis , L. Testi , A. Natta 2019
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population of one star-forming region. Emission is detected in 5 out of the 9 BD disks. Dust disk mass, brightness profiles and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove if the disk mass over stellar mass ratio drops for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 $M_{bigoplus}$; these results suggest that the measured solid masses in BD disks can not explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of $dot{M}_{mathrm{acc}} / M_{mathrm{disk}}$ significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
The number of brown dwarfs (BDs) now identified tops 700. Yet our understanding of these cool objects is still lacking, and models are struggling to accurately reproduce observations. What is needed is a method of calibrating the models, BDs whose pr operties (e.g. age, mass, distance, metallicity) that can be independently determined can provide such calibration. The ability to calculate properties based on observables is set to be of vital importance if we are to be able to measure the properties of fainter, more distant populations of BDs that near-future surveys will reveal, for which ground based spectroscopic studies will become increasingly difficult. We present here the state of the current population of age benchmark brown dwarfs.
115 - M. .Zejmo 2016
We present the first linear polarimetric survey of white dwarfs (WDs). Our sample consists of WDs of DA and DC spectral types in the SDSS r magnitude range from 13 to 17. We performed polarimetric observations with the RoboPol polarimeter attached to the 1.3-m telescope at the Skinakas Observatory. We have 74 WDs in our sample, of which almost all are low polarized WDs with polarization degree (PD) smaller than 1%, while only 2 have PD higher than 1%. There is an evidence that on average the isolated WDs of DC type have higher PD (with median PD of 0.78%) than the isolated DA type WDs (with median PD of 0.36%). On the other hand, the median PD of isolated DA type WDs is almost the same, i.e. 0.36% as the median PD of DA type white dwarfs in binary systems with red dwarfs (dM type), i.e. 0.33%. This shows, as expected, that there is no contribution to the PD from the companion if the WD companion is the red dwarf, which is the most common situation for WDs binary systems. We do not find differences in the polarization degree between magnetic and non-magnetic WDs. Because 97% of WDs in our sample have PD lower than 1%, they can be used as faint zero--polarized standard star in the magnitude range from 13 up to 17 of SDSS r filter. They cover the Northern sky between 13 hour to 23 hour in right ascension and from -11 degrees to 78 degrees in declination. Additionally, we found that for low extinction values (< 0.04) the best model that describes the dependence of PD on E(B-V) is given by the equation: PD_{max, ISM}[%] = 0.65 x E(B-V)^{0.12}.
514 - E.T. Whelan 2014
The protostellar outflow mechanism operates for a significant fraction of the pre-main sequence phase of a solar mass star and is thought to have a key role in star and perhaps even planet formation. This energetic mechanism manifests itself in sever al different forms and on many scales. Thus outflow activity can be probed in numerous different regimes from radio to X-ray wavelengths. Recent discoveries have shown that it is not only solar mass stars that launch outflows during their formation but also the sub-stellar brown dwarfs. In this article what is currently known about jets from young stars is summarised, including an outline of why it is important to study jets. The second part of this article is dedicated to jets from young brown dwarfs. While only a small number of brown dwarf outflows have been investigated to date, interesting properties have been observed. Here observations of brown dwarf outflows are described and what is currently known of their properties compared to low mass protostellar outflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا