ﻻ يوجد ملخص باللغة العربية
We describe a simple form of importance sampling designed to bound and compute large-deviation rate functions for time-extensive dynamical observables in continuous-time Markov chains. We start with a model, defined by a set of rates, and a time-extensive dynamical observable. We construct a reference model, a variational ansatz for the behavior of the original model conditioned on atypical values of the observable. Direct simulation of the reference model provides an upper bound on the large-deviation rate function associated with the original model, an estimate of the tightness of the bound, and, if the ansatz is chosen well, the exact rate function. The exact rare behavior of the original model does not need to be known in advance. We use this method to calculate rate functions for currents and counting observables in a set of network- and lattice models taken from the literature. Straightforward ansatze yield bounds that are tighter than bounds obtained from Level 2.5 of large deviations via approximations that involve uniform scalings of rates. We show how to correct these bounds in order to recover the rate functions exactly. Our approach is complementary to more specialized methods, and offers a physically transparent framework for approximating and calculating the likelihood of dynamical large deviations.
In these notes we present a pedagogical account of the population dynamics methods recently introduced to simulate large deviation functions of dynamical observables in and out of equilibrium. After a brief introduction on large deviation functions a
We use a neural network ansatz originally designed for the variational optimization of quantum systems to study dynamical large deviations in classical ones. We obtain the scaled cumulant-generating function for the dynamical activity of the Fredrick
Singularities of dynamical large-deviation functions are often interpreted as the signal of a dynamical phase transition and the coexistence of distinct dynamical phases, by analogy with the correspondence between singularities of free energies and e
Active matter represents a broad class of systems that evolve far from equilibrium due to the local injection of energy. Like their passive analogues, transformations between distinct metastable states in active matter proceed through rare fluctuatio
For quantum integrable systems the currents averaged with respect to a generalized Gibbs ensemble are revisited. An exact formula is known, which we call collision rate ansatz. While there is considerable work to confirm this ansatz in various models