ترغب بنشر مسار تعليمي؟ اضغط هنا

A Game-Theoretic Framework for Autonomous Vehicles Velocity Control: Bridging Microscopic Differential Games and Macroscopic Mean Field Games

216   0   0.0 ( 0 )
 نشر من قبل Kuang Huang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes an efficient computational framework for longitudinal velocity control of a large number of autonomous vehicles (AVs) and develops a traffic flow theory for AVs. Instead of hypothesizing explicitly how AVs drive, our goal is to design future AVs as rational, utility-optimizing agents that continuously select optimal velocity over a period of planning horizon. With a large number of interacting AVs, this design problem can become computationally intractable. This paper aims to tackle such a challenge by employing mean field approximation and deriving a mean field game (MFG) as the limiting differential game with an infinite number of agents. The proposed micro-macro model allows one to define individuals on a microscopic level as utility-optimizing agents while translating rich microscopic behaviors to macroscopic models. Different from existing studies on the application of MFG to traffic flow models, the present study offers a systematic framework to apply MFG to autonomous vehicle velocity control. The MFG-based AV controller is shown to mitigate traffic jam faster than the LWR-based controller. MFG also embodies classical traffic flow models with behavioral interpretation, thereby providing a new traffic flow theory for AVs.



قيم البحث

اقرأ أيضاً

97 - Kuang Huang , Xu Chen , Xuan Di 2020
This paper aims to answer the research question as to optimal design of decision-making processes for autonomous vehicles (AVs), including dynamical selection of driving velocity and route choices on a transportation network. Dynamic traffic assignme nt (DTA) has been widely used to model travelerss route choice or/and departure-time choice and predict dynamic traffic flow evolution in the short term. However, the existing DTA models do not explicitly describe ones selection of driving velocity on a road link. Driving velocity choice may not be crucial for modeling the movement of human drivers but it is a must-have control to maneuver AVs. In this paper, we aim to develop a game-theoretic model to solve for AVss optimal driving strategies of velocity control in the interior of a road link and route choice at a junction node. To this end, we will first reinterpret the DTA problem as an N-car differential game and show that this game can be tackled with a general mean field game-theoretic framework. The developed mean field game is challenging to solve because of the forward and backward structure for velocity control and the complementarity conditions for route choice. An efficient algorithm is developed to address these challenges. The model and the algorithm are illustrated on the Braess network and the OW network with a single destination. On the Braess network, we first compare the LWR based DTA model with the proposed game and find that the driving and routing control navigates AVs with overall lower costs. We then compare the total travel cost without and with the middle link and find that the Braess paradox may still arise under certain conditions. We also test our proposed model and solution algorithm on the OW network.
96 - Kuang Huang , Xuan Di , Qiang Du 2019
This paper presents scalable traffic stability analysis for both pure autonomous vehicle (AV) traffic and mixed traffic based on continuum traffic flow models. Human vehicles are modeled by a non-equilibrium traffic flow model, i.e., Aw-Rascle-Zhang (ARZ), which is unstable. AVs are modeled by the mean field game which assumes AVs are rational agents with anticipation capacities. It is shown from linear stability analysis and numerical experiments that AVs help stabilize the traffic. Further, we quantify the impact of AVs penetration rate and controller design on the traffic stability. The results may provide insights for AV manufacturers and city planners.
We study a general class of entropy-regularized multi-variate LQG mean field games (MFGs) in continuous time with $K$ distinct sub-population of agents. We extend the notion of actions to action distributions (exploratory actions), and explicitly der ive the optimal action distributions for individual agents in the limiting MFG. We demonstrate that the optimal set of action distributions yields an $epsilon$-Nash equilibrium for the finite-population entropy-regularized MFG. Furthermore, we compare the resulting solutions with those of classical LQG MFGs and establish the equivalence of their existence.
We study a class of deterministic finite-horizon two-player nonzero-sum differential games where players are endowed with different kinds of controls. We assume that Player 1 uses piecewise-continuous controls, while Player 2 uses impulse controls. F or this class of games, we seek to derive conditions for the existence of feedback Nash equilibrium strategies for the players. More specifically, we provide a verification theorem for identifying such equilibrium strategies, using the Hamilton-Jacobi-Bellman (HJB) equations for Player 1 and the quasi-variational inequalities (QVIs) for Player 2. Further, we show that the equilibrium number of interventions by Player 2 is upper bounded. Furthermore, we specialize the obtained results to a scalar two-player linear-quadratic differential game. In this game, Player 1s objective is to drive the state variable towards a specific target value, and Player 2 has a similar objective with a different target value. We provide, for the first time, an analytical characterization of the feedback Nash equilibrium in a linear-quadratic differential game with impulse control. We illustrate our results using numerical experiments.
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This pro of depends upon the derivation of a law of large numbers for the empirical processes in the limit as the number of players tends to infinity. Because it is of independent interest, we prove this result in full detail. We characterize the solutions of the limiting game via a verification argument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا