ﻻ يوجد ملخص باللغة العربية
Extra-galactic X-ray absorption and optical extinction are often found in gamma-ray burst (GRB) afterglows and they could be tracers of both circumburst and host galaxy environments. By performing spectral analyses for spectral energy distribution of 9 short GRB (SGRB) afterglows with known redshift, we investigated a ratio of the equivalent hydrogen column density to the dust extinction, N^{rest}_{H}/A^{rest}_{V}, in the rest frame of each SGRB. We found that the distribution of N^{rest}_{H}/A^{rest}_{V} is systematically smaller than the one for long GRBs, and is roughly consistent with the gas-to-dust ratio in the Milky Way. This result means that the measured gas-to-dust ratio of SGRBs would originate from the interstellar medium in each host galaxy. This scenario supports the prediction that SGRBs occur in non star-forming regions in the host galaxies.
In order to study the effect of dust extinction on the afterglow of gamma-ray bursts (GRBs), we carry out numerical calculations with high precision based on rigorous Mie theory and latest optical properties of interstellar dust grains, and analyze t
The combined detection of a gravitational-wave signal, kilonova, and short gamma-ray burst (sGRB) from GW170817 marked a scientific breakthrough in the field of multi-messenger astronomy. But even before GW170817, there have been a number of sGRBs wi
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that the
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotro
We systematically analyze three GRB samples named as radio-loud, radio-quiet and radio-none afterglows, respectively. It is shown that dichotomy of the radio-loud afterglows is not necessary. Interestingly, we find that the intrinsic durations ($T_{i